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ABSTRACT 

Unconventional hydrocarbon reservoirs have proved to be challenging in terms of 

reservoir characterization, predicting production potential, estimating ultimate 

recovery, and optimizing hydraulic fracture stimulations. The methods by which these 

resources are extracted use progressive, or unconventional, technologies. Today, 

through the use of hydraulic fracturing and horizontal drilling, extraordinary amounts 

of oil and natural gas from deep shale formations across the United States and around 

the world are being safely produced.  

Performing a hydraulic fracture design requires modeling of fracture propagation 

and tracking the fluid front in the created fracture. In this dissertation, the roles of all 

effective parameters and properties on the design and performance of hydraulic 

fracturing in the Bakken Formation, Williston Basin, are examined.  
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To accomplish the above objectives, this dissertation is divided into four major 

sections that include: 1) basic principles of geology, lithology, and reservoir aspects 

of the Bakken Formation, 2) the fundamental concepts of hydraulic fracturing, 3) 

technology aspects are integrated into one cohesive unit to model and optimize the 

entire hydraulic fracture treatments, and 4) a comprehensive approach to the 

uncertainty assessment of the complex numerical simulations is described. 

In this research by integrating reservoir and hydraulic fracture simulations, a 

robust workflow was used to evaluate several combinations of fracturing materials 

(i.e. fluids and proppants) and well/fracture parameters (i.e. lateral length, fracture 

spacing, and fracture half-length) to identify the best candidate(s) for well stimulation 

planning. Using an automated history matching procedure, the reservoir properties of 

the Bakken Formation were estimated that can be used in future reservoir simulation 

projects.  

The fully 3D/FEM* fracture simulation showed that a fracturing treatment with 

injecting slickwater as the pad followed by crosslinked gel together with ceramic or 

resin-coated sand would guarantee that most proppants would stay within the Bakken 

Formation. The results from this research also suggest that in a Bakken well with a 

long lateral length (e.g. 10,000 ft), a fracturing strategy that leads to a relatively high 

fracture half-length (e.g. 1000 ft) with a high number of fractures (36 or more) would 

return an efficient balance between the operating charges, fracture treatment costs, 

drilling expenses, and the benefits earned from the incremental oil production. The 

pump schedule developed for the optimal fracture treatment, obtained from the fully-

3D fracture modeling, would also guarantee fracture confinement within the Bakken 

Formation. 
                                                 

* Finite Element Method 
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CHAPTER I 

INTRODUCTION 

Research Description 

Hydraulic fracturing is the process of creating small cracks, or fractures, in 

underground formations to allow oil or natural gas to flow into the wellbore and 

thereby increasing production. Prior to initiating hydraulic fracturing, geoscientists 

and reservoir engineers model the characteristics of the hydrocarbon bearing rock 

formation, including its permeability, porosity and thickness. Today using this 

information, they design the hydraulic fracturing process to insure that the resulting 

fractures are within the target zone.  

The Bakken Formation of Williston Basin is a tight layer of interbedded, 

naturally fractured low permeability black shale, siltstone, silty sandstone, and silty 

carbonate at about 10,000 ft depth [Philipp et al., 2012]. It is believed that it would 

not produce economic quantities of hydrocarbons without hydraulic fracturing and 

horizontal drilling technologies. To fully unlock the potential of the Bakken 

Formation, we must confront challenges related to our knowledge of geology, 

geochemistry, geomechanics, fracture mechanics and reservoir engineering. With this 

in mind, a comprehensive study of the Bakken wells was conducted to develop 

systematic criteria to optimized horizontal drilling and hydraulic fracturing that has 

the potential to lead to successful development of the Bakken shale oil.  
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Successful completion of this project will provide a better insight into the design 

of hydraulic fractures, the reservoir response to fracturing operations, and more 

accurate prediction of fracture dimensions in the Bakken Formation. These are the 

keys to lowering the risk of horizontal drilling and hydraulic fracturing, and for 

increasing the recovery factor in the Bakken Formation, an unconventional shale play.  

Objectives and Motivations 

Since hydraulic fracturing is a complex phenomenon, analytical solutions to 

modeling the process are either unavailable or complex. This is particularly true when 

formulating the hydraulic fracture propagation in a complex geologic formation, or 

when modeling the rock-fluid interaction within the framework of poroelasticity. The 

main objective of this research is, therefore, to use available numerical simulation 

methods to describe the process of hydraulic fracturing design, to emphasize critical 

design factors that determine design effectiveness, and to investigate optimal 

treatment selection for horizontal wells of the Bakken Formation.  

Methodology 

This research is intended to enhance industry’s understanding of the hydraulic 

fracturing of horizontal wells in the Bakken Formation, in order to improve oil 

recovery from this important domestic resource. The data used for the simulation 

tasks in this research have come from the following sources: 

1) Structural and geomechanical properties: 

 Well log data, 

 Laboratory geomechanical tests on the cores (AutoLab 1500). 

2) Well selection and data gathering:  
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 Literature review on geology and lithology, 

 Well log data. 

3) Numerical modeling: 

 Hydraulic fracture simulation, 

 Reservoir simulation. 

4) Optimization: 

 Integrating fracture/reservoir simulation,  

 Economic analysis, 

 Uncertainty assessment. 

Anticipated Results 

Using the reservoir information and the interpretation methods discussed above, 

we conducted an integrated study on fracture simulation, reservoir characterization, 

reservoir simulation, and hydraulic fracture optimization, from which the following 

results were obtained: 

1. An integrated study on the role(s) of hydraulic fracturing in enhancing 

recovery from the Bakken Formation. 

2. A thorough understanding of hydraulic fracture initiation and propagation 

in Bakken horizontal wells, and better design of drilling/completion for 

Bakken horizontal wells. 

Techniques and Dissertation Outline 

In this research the following topics are covered to help develop an integrated 

package for the successful hydraulic fracturing of horizontal wells in the Bakken 

Formation: 

Chapter 1 is an introduction to the subject of this research and the essential 

information on the Bakken Formation, Williston Basin. 

Chapter 2 is an overview of hydraulic fracturing technology. 



www.manaraa.com

4 
 

In chapter 3 an integrated study was conducted to thoroughly analyze the hydraulic 

fracture treatment in the study area located in Williams County, North Dakota. 

Topics include the basics of hydraulic fracturing process, stress issues, fracture 

geometry, and fluid and proppant selection. This chapter presents an integrated 

fracture/reservoir simulation to investigate the effects of various fracturing 

treatment parameters on both hydraulic fracture geometry/propagation and 

post-frac performance of the stimulated well. An economic optimization of 

hydraulic fracturing treatments was conducted in which series of discounted 

cash flow analysis for evaluating the financial performance of different 

treatment scenarios were considered.  

Finally, in chapter 4 an uncertainty assessment was conducted to support decision-

making process in well stimulation planning in the Bakken Formation. This 

study helped us determine how to: a) use cash flow techniques applicable in 

economic evaluations, b) evaluate and choose investment opportunities, c) use 

models to weigh risk and uncertainties, and d) evaluate decision alternatives 

using predictive techniques. 

Chapter 5 presents the conclusions and recommendations. 

Research Impact 

A more accurate simulation of hydraulic fracture propagation and post-frac 

performance of stimulated wells in the Bakken Formation would drastically improve 

our understanding hydraulic fracturing in Bakken horizontal wells. This has profound 

implications for hydrocarbon exploration because the production in such a tight 

formation is largely influenced by well/completion design. In fact, how much of the 
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Bakken oil is technically and economically recoverable may be determined by 

answering some key questions facing the industry: 

1) How would the results of detailed reservoir characterization impact the 

hydraulic fracturing design? 

2) What is the optimal completion design alternative among those which can be 

practiced? 

3) What are the optimal horizontal well parameters? 

4) What is the optimal fracturing treatment scenario (in terms of fracturing 

materials) for a set of known well/fracture parameters? 

Background 

The geological heterogeneity, in-situ stress, recovery mechanisms, and 

geomechanical parameters of the Bakken Formation have been studied by many 

researchers [Breit et al., 1992; LeFever and Helms, 2006; Lantz et al., 2007; Besler et 

al., 2007; Cox et al., 2008; Dunek et al., 2009]. Based on their reservoir 

characterization results, they concluded that: a) horizontal well drilling with hydraulic 

fracturing is a required completion technology for producing oil in the Bakken 

Formation, b) well orientation is the essential factor to the success of hydraulic 

fracturing and wellbore stability during drilling and production, c) hydraulic fracture 

geometry and orientation (longitudinal, transverse or oblique) is fully controlled by 

the local in-situ stress field and geomechanical properties of the formation. More 

often than not, a longitudinal fracture in design becomes a transverse or skewed one 

in reality, d) in-situ stress field and geomechanical properties change from along the 

axis of those horizontal wells that extended several thousand feet, such as those in the 

Bakken Formation, e) knowing the in-situ stresses and the fundamental 
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geomechanical properties of the rock is the key to designing a successful horizontal 

well and the future hydraulic fracturing stimulation. 

Overview of the Bakken Formation 

The Williston Basin in central North America, with an area of 96,500 mi2 and a 

maximum stratal thickness of 13,500 ft, stretches across the Canadian provinces of 

Manitoba and Saskatchewan and the U.S. states of Montana, North Dakota, and South 

Dakota [Philipp et al., 2012]. The Bakken is one of the hydrocarbon producing 

formations in the Williston Basin, a sedimentary basin covering parts of three states 

and two provinces. The total layer of sediments in the basin can be up to 15,000 ft 

thick, and within that, the Bakken itself reaches a maximum thickness of about 150 ft, 

but is thinner in most areas. The depth to the top of the Bakken can vary from a few 

thousand feet in Canada to more than 10,000 feet in the deeper areas in North Dakota. 

In terms of geologic age, it was deposited during the upper Devonian and Lower 

Mississippian periods about 360 million years ago. The entire stratigraphic column for 

the Williston Basin is shown below. Figure 1 indicates 15 primary producing 

formations in the basin, including the Bakken. 

The Bakken shale consists of three members, the upper, middle, and lower. The 

upper and lower members are similar, and can be characterized as gray or black 

organic-rich shale. The middle member is more like a conventional reservoir with 

siltstones, sandstones, dolostones, and limestones. The middle member has been a 

target for many horizontal wells, but more recently the upper and lower horizons are 

also being seen as important reservoirs [Dow, 1974; LeFever and Helms, 2006; Lantz 

et al., 2007; Besler et al., 2007]. 
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Figure 1. Williston Basin stratigraphic column [Philipp et al., 2012] 

Horizontal drilling technology achieved commercial viability during the late 

1980’s. Its successful employment, particularly in the Bakken Shale of North Dakota 

and the Austin Chalk of Texas, has encouraged testing of it in many domestic 

geographic regions and geologic situations. Of the three major categories of 

horizontal drilling, short-, medium-, and long-radius, the medium-radius well has 

been most widely used and productive [Lantz et al., 2007; Besler et al., 2007; Cox et 
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al., 2008; Dunek et al., 2009; Lolon et al., 2009]. Achievable horizontal borehole 

length grew rapidly as familiarity with the technique increased; horizontal 

displacements have now been extended to over 8,000 feet [NDIC, 2013]. Some wells 

have featured multiple horizontal bores. Completion and production techniques have 

been modified for the horizontal environment, with more change required as the well 

radius decreases; the specific geologic environment and production history of the 

reservoir also determine the completion methods employed.  

In shale reservoirs like the Bakken, natural fractures play a big role. These are 

natural cracks which have low porosity but can have permeabilities one to several 

orders of magnitude greater than the rock fabric or matrix. Most of the better wells in 

the Bakken have encountered abundant open natural fractures. The Mississippian-

Devonian Bakken Petroleum System of the Williston Basin is characterized by low 

porosity (~6%) and permeability reservoirs (<0.0001 md), organic rich source rocks, 

and regional hydrocarbon charge. This unconventional play is the current focus of 

exploration and development activity by many operators. Estimates of oil generated 

from the petroleum system range from 10 to 400 billion barrels (1.6 to 63.9 billion 

m3) [Dow, 1974; Schmoker and Hester, 1983; LeFever and Helms, 2006; Webster, 

1984; Meissner and Banks, 2000; Flannery and Kraus, 2006].  

The Williston Basin is a large, intracratonic sedimentary basin that occupies parts 

of North Dakota, South Dakota, Saskatchewan, and Manitoba (Figure 2). The 

stratigraphic column for the Bakken Formation and the adjacent intervals are shown 

in Figure 3. The field is a recent giant discovery in the Middle Bakken. Horizontal 

drilling began in the field in 2000, and to date many horizontal wells have been 

drilled. The estimated ultimate recovery for the field is more than 4 billion barrels of 

oil. Horizontal drilling and fracture stimulation of the horizontal leg are key 
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technologies that enable a low permeability reservoir to produce. A detailed 

understanding of reservoir properties will aid in the exploration and discovery of other 

areas as well as successful design of development plans in the Bakken petroleum 

system, which is one of the major goals of this research project [LeFever and Helms, 

2006; Webster, 1984; Meissner and Banks, 2000; Flannery and Kraus, 2006]. 

 

Figure 2. Williston basin and its major structures in the USA portion [Heck et al., 2002]. 

 
Figure 3. Stratigraphy of the Bakken Formation. 

The three members of the Bakken are thin and converge towards the margins of 

the Williston Basin and have an onlapping relationship with the underlying Three 
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Forks (Figure 4). The petrophysical properties of the Bakken Formation over a study 

area in the Williston Basin are shown in Table 1. 

 
Figure 4. Structural cross section of Williston Basin. 

Table 1. The properties of the Bakken Formation [Bohrer et al. 2008] 

Member of the Bakken Formation Upper Middle Lower 

Measured Depth at Top, feet 11,160 11,260 11,310 

Thickness, feet 18 41 19 

Pay thickness, feet 18 14 19 

Porosity (fraction) 0.07 0.12 0.07 

Water saturation, Sw (fraction) 0.14 0.17 0.20 

Oil saturation, So (fraction) 0.86 0.83 0.80 

Reservoir Temperature, oF 168 170 171 

FVF 1.4 1.4 1.4 

GOR, ft3 per Res.BBL 808 1026 591 

FVF - Formation volume factor 
GOR - Gas-oil ratio 

The measured permeability ranges from 0 to 20 millidarcies in the middle 

member and typically is very low, averaging 0.04 millidarcies (Figure 5). At any 

given depth, permeability in sandstones can vary markedly. It can also vary with the 

thermal maturity of the source shales. As burial depth increases, permeability in 

sandstones has been shown to decrease from a range of about 0.06 to 0.01 

millidarcies, where the adjacent shales are immature, to a range of about ≤ 0.01 to 

0.01 millidarcies where these shales are mature. This decrease in permeability is 

attributed to carbonate precipitation in response to the generation of CO2 during 

kerogen maturation of the shales [Pitman et al., 2001]. 
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Figure 5. Plot of core porosity versus permeability in sandstones and siltstones of the middle 

member of the Bakken Formation [Pitman et al., 2001].  

As is clear from Figure 5, the permeability of the Bakken Formation is very low 

compared to conventional reservoirs. However, the presence of natural fractures in the 

tight Bakken reservoir enhances the reservoir quality [Murray, 1968; Meissner, 1978; 

Pitman et al., 2001]. Three types of fractures are reported to occur in the Bakken: (1) 

structural related tectonic fractures, (2) stress-related regional fractures, and (3) 

expulsion fractures associated with overpressuring due to hydrocarbon generation 

[Druyff, 1991].  

Two or more decades ago, recovery of oil from the Bakken Formation would 

have been considered in terms of primary recovery from minimally-stimulated 

vertical wells. Today, however, petroleum engineers think of the Bakken oil recovery 

in terms of the degree of fracturing stimulation in horizontal wells, optimal lateral 

length, and optimal number of horizontal wells drilled as well as optimal fracturing 

treatment materials (fracturing fluid plus proppant) that shape the success of well 
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stimulation in Bakken horizontal wells to a large degree [Cox et al., 2008; Dunek et 

al., 2009; Lolon et al., 2009]. 

Overview of Hydraulic Fracturing 

Hydraulic fracturing is a widely used technique to enhance oil and gas 

production. The technique was introduced to the petroleum industry in 1947 

[Montgomery and Smith, 2010], and is now a standard operating procedure. By 1981, 

more than 800,000 hydro fracturing treatments had been performed and recorded 

[Gidley, 1990].  

 

Figure 6. Typical hydraulic fracturing treatment in petroleum industry [Gidley, 1990] 

Since its inception, hydraulic fracturing has developed from a simple low volume 

and low injection rate reservoir stimulation technique to a highly engineered and 

complex procedure that can be used for many purposes. Figure 6 depicts a typical 

hydraulic fracturing process in the petroleum industry. The procedure is as follows. 

First, a neat fluid, such as water (called “pad”), is pumped into the well at the desired 

depth (pay zone), to initiate the fracture and to establish its propagation. This is 
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followed by pumping slurry, which is a fluid mixed with a propping agent, such as 

sand (often called “proppant”). This slurry continues to extend the fracture and 

concurrently carries the proppant deep into the fracture.  

After pumping, the injected fluid chemically breaks down to a lower viscosity 

and flows back out of the well, leaving a highly conductive propped fracture for oil 

and/or gas to easily flow from the extremities of the formation into the well. It is 

generally assumed that the induced fracture has two wings, which extend in opposite 

directions from the well and is oriented, more or less, in a vertical plane. Other 

fracture configurations, such as horizontal fractures, are also reported to occur, but 

they constitute a relatively low percentage of situations documented. Experience 

indicates that at a depth of below 600 meters, fractures are usually oriented vertically 

[Veatch et al., 1989; Gidley, 1990]. The fracture pattern, however, may not be the 

same for different types of rock. 

For decades, petroleum engineers have been developing models for simulating 

hydraulic fracturing in hydrocarbon reservoirs. In the early 1960's, the industry felt 

the need for a design tool for this fast growing technique. In response to this need, a 

number of two-dimensional (2D) models were developed for designing hydraulic 

fracturing treatments [Perkins and Kern, 1961; Geertsma and de Klerk, 1969]. This 

type of simple closed form solution has been used by the industry with some success; 

however, as the technology progressed from low volume/rate to high volume/rate 

treatments in more sophisticated and massive hydraulic fracturing projects, the 

industry demanded more rigorous design methods in order to minimize costs. In the 

last 20 years, a number of 2D and 3D numerical models have been developed.  

The most common equations used in these numerical models are fluid flow 

equations, which are usually solved iteratively. Geomechanical aspects are 
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incorporated in the models, mostly in an uncoupled manner. Mainly vertical or 

horizontal planar fractures were considered, based on the 2D closed form solutions 

mentioned above. The degree of sophistication of these models varies considerably 

and their results cannot be validated with much confidence. The main problem in 

validating these models is that the configuration of the induced fracture is not really 

known; therefore, the results of the model are usually evaluated based on fluid 

injection pressure measurements and/or the production history of the well. 

In a 3D fracture model, however, fracture width is calculated using 3D elasticity; 

i.e. the fracture width anywhere is a function of the pressure everywhere in the 

fracture [Warpinski et al., 1982]. In a pseudo-3D (P3D) solution the combination of 

analytical and numerical routines will predict the fracture height and width. Fully 3D 

models, on the other hand, are complex numerical routines with extensive input data 

and high computation requirements. In a fully 3D model, the fracture height, width, 

length, and shape can all vary completely independently [Gidley, 1990]. 
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CHAPTER II 

HYDRAULIC FRACTURING CONCEPTS AND FUNDAMENTALS 

Introduction  

 Hydraulic fracturing is a technique used by the oil and gas industry to increase a 

well’s productivity by injecting water, sand and a mixture of often chemicals at very 

high pressures, fracturing the rock and creating fissures for the hydrocarbon to flow 

more freely out of the formation [Nijhuis, 2009]. Hydraulic fracturing includes a 

number of processes: fracture initiation, fracture propagation, fluid flow in the 

fracture, and fluid diffusion into the formation. A detailed study on each of these 

processes is beyond the objectives of this research. However, it is beneficial to review 

these processes to better understand the problems involved in the design of a 

hydraulic fracturing job. 

Fracture Initiation and Propagation; Energy-Balance Approach 

In dealing with the fracture initiation problem, we need to evaluate the critical 

level of applied loads corresponding to the inception of a hydraulic fracture. Using the 

concepts of deformation and stresses, one can decipher the criteria of fracture 

initiation and fracture propagation.  

Griffith began his pioneering studies of fracture in glass just prior to 1920 in 

which he stated that in a stressed plate of elastic material containing a crack, the 
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potential energy decreases when the surface energy increases [Griffith, 1921]. He 

employed an energy-balance approach that became one of the most popular 

developments in material science [Collins, 1981; Roylance, 2001]. The strain energy 

per unit volume of stressed material is: 

* 1 f dx
U f dx d

V A L
       

(1)

If the material is linear elastic, which means E   ( E  is Young’s modulus and   

is strain), then the strain energy per unit volume is given by: 

2 2
*

2 2

E
U

E

 
   (2)

The region adjacent to a fracture around the wellbore will be unloaded once the 

crack has grown into the formation to a length fx . Griffith used Inglis [1913] solution 

in calculating the stress concentrations around elliptical holes [Barsom, 1987; Perez, 

2004], to compute just how much energy will be released from fracture growth. 

Figure 7 illustrates a simple way of visualizing this energy release. Two triangular 

regions near the crack flanks, of height fx  and length fx , as being completely 

unloaded, while the remaining rock formation continues to feel the effective stress 

e . The total strain (potential) energy (U ) released is then the strain energy per unit 

volume ( *U ) times the volume in both triangular regions (the dimension normal to 

the plane is taken to be unity): 

2 2

2
fx

U
E


   (3)
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Figure 7. Idealization of unloaded region near crack flanks. 

This stain energy is liberated by crack growth. But in forming the crack, bonds 

must be broken, and the requisite bond energy is in effect absorbed by the material. 

The surface energy ( S ) associated with a crack of length fx  (and unit thickness) is: 

2 fS x  (4)

Where   is the surface energy (joules/m2) and the factor 2 is needed since two crack 

surfaces have been formed. The total energy associated with the crack is then sum of 

the (positive energy) absorbed to create the new surfaces, plus (negative) strain 

energy liberated by allowing the regions near the crack flanks to become unloaded 

[Roylance, 2001] (Figure 8).  
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Figure 8. Idealization of the fracture energy balance. 

As shown in Figure 7, a long horizontal well containing a crack is subjected to a 

uniform tensile load in the direction of the wellbore (x-axis), and perpendicular to the 

crack line along the y-axis. The question here is: What is the external stress that will 

cause crack instability (crack propagation) value?  

Solution: Considering the configuration in Figure 7, the total potential energy of 

the system is given by [Perez, 2004]: 

   
2 2 21

2 2

fo x

f

o f s

U U U U

x
U x

E



  


  


  

 (5)

Where oU  is the potential energy of uncracked body, x f
U  is the elastic energy due to 

the presence of the crack, U  is the elastic-surface energy due to the formation of 

crack surfaces, 4 fx   is the total surface crack area, s  is the specific surface energy, 

and   is Poisson’s ratio (plain strain— biaxial stress state). The equilibrium condition 

of Eq.5 is defined by the first order derivative with respect to crack length. This 
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derivative is very useful because the critical crack size can be readily predicted. When 

0
f

dU
dx  , the crack size and total surface energy are, respectively [Perez, 2004]: 

2

(2 )s
f
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Rearranging Eq.7 yields an important expression in linear elastic fracture mechanics 

(LEFM) [Perez, 2004]: 
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 





 (8)

I fK x   (9)

The parameter IK  is called the stress intensity factor which is the crack driving force 

and its critical value is a material property known as fracture toughness, which in turn, 

is the resistance force to crack extension. 

The Fundamentals of Hydraulic Fractures  

Generally speaking, hydraulic fracturing is used to increase the productivity 

index of a producing well, or injectivity index of an injection well. The productivity 

index refers to the total volume of fluid that can be produced for a specific drawdown 

pressure, and injectivity index refers to the amount of fluid that can be injected into a 

formation at a given pressure differential. A fracturing job usually consists of four 

main stages: 

a) Injecting a small quantity of fluid down the well known as “pre-pad” to 

fill up the well and to breakdown the formation. This stage is intended to 

initiate the fracture. 
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b) A clean fluid known as “pad” is then pumped. The hydraulic pressure 

generated by pumping the pad causes the fracture to propagate into the 

formation. 

c) Next, a proppant-laden fluid (slurry) is pumped into the fracture. 

d) Finally, in the last and very important stage of the fracturing job the fluid 

should be broken so as to flow back to the surface and the well can 

cleanup. 

Figure 9 demonstrates the stages of a hydraulic fracturing job. 

 

Figure 9. Hydraulic Fracture Stimulation Process [Tschirhart, 2005; Rajcopal, 2006] 

Hydraulic Fracture Size 

Larger hydraulic fractures will form if we use high volumes of fracturing fluid 

and proppant. However, uncontrolled growth of fractures is not intended from a 
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production point of view. Figure 10 shows how the maximum fracture size can be 

limited. In this specific case it is assumed that the fracture is initiated from the mid-

point perforations and the fracture propagates radially. In practice, a fracture may 

propagate radially when the formation is homogeneous with a stress gradient equal to 

the hydrostatic head of the fracturing fluid. 

 

Figure 10. Hydraulic fracture size [Courtesy of Prod Tech.] 

Hydraulic Fracture Containment 

A successful hydraulic fracture job is such that the fracture does not contact 

undesired layers or it does not reach to unwanted fluids in a single-layer formation. A 

good hydraulic fracture design should guarantee that the fracture is contained within 

the pay zone, i.e. the upward/downward fracture growth will be retarded by the 

changes in formation property between the layers.  
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Figure 11. In-situ stress contrast [Courtesy of Prod Tech.] 

The major formation properties that influence the fracture geometry and fracture 

growth are as follow [Gidley et al, 1990]: 

a) Geomechanical parameters: Sand layers have typically lower Poisson’s 

ratio (but higher Young’s modulus) than the bounding shale layers, 

which aids hydraulic fracture containment. 

b) Critical fracture intensity factor: Fracture propagation will become 

harder when fracture toughness is higher. 

c) Fluid leakoff: A hydraulic fracture will become blunt and thus no more 

propagation will occur when there is a high rate of the fluid loss from the 

fracture walls into the formation. 

Hydraulic Fracture Growth 

The minimum horizontal stress contrast and the thickness of the bounding layers 

are the key parameters that control the fracture containment. Figure 12 illustrates the 

effect of horizontal stress contrast on the vertical fracture growth. As is clear in the 

figure, the fracture grows initially in the pay zone until it reaches to the boundary. 
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Then, the fracture grows parallel to bedding and becomes more elongated— with 

higher stress contrasts the fracture grows horizontally [Gidley et al, 1990]. 

 

Figure 12. Hydraulic fracture growth; a) vertical fracture growth has stopped when stress 

contrast is large, b) limited upward fracture growth with medium stress contrast, and c) 

almost uncontrolled upward fracture growth when the stress contrast is so small [Courtesy of 

Prod Tech.]. 

Figure 13 explains what would happen when fracture containment is no longer 

effective due to the height of the upper barrier and the available in-situ stress contrast 

in the formation.  
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Figure 13. Relationship between fracture containment and stress contrast [Courtesy of Prod 

Tech.] 

When the fracture breakthrough into the upper zone occurs, the fracture length in 

the pay zone will decrease. And, real time measurement (monitoring) of the fracture 

propagation (pressure), allows us to monitor the fracture containment. On the other 

hand, we should have knowledge of the fracture height when designing and executing 

a hydraulic fracture job. There are a number of measurement techniques used in the 

industry to measure the fracture height growth [Gidley et al, 1990]: 

1) Temperature log that is run immediately after the fracture treatment. 

2) Running a production log across the perforation interval to measure the flow 

profile. 

3) Running a gamma ray log after removing the excess proppant from the 

wellbore. The proppants are given radioactive coating. 

4) Using a formation microscanner or a borehole camera to observe the fractures 

in open-hole completions. 
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5) Meicroseismic. This involves triangulation of seismic events emitted from the 

propagating fracture tip. These seismic events are measured with geophones 

installed at the surface or in the wellbore. 

6) Using tiltmeter at the surface to measure the surface topography due to 

propagation of the hydraulic fracture. Such changes indicate the length and 

orientation of the hydraulic fracture. 

Two-Dimensional Fracture Models 

Mathematical fracture propagation models have been introduced in the early 

1960’s, to relate injection rate, q , time of treatment, t , and fluid leakoff, q , with 

fracture dimensions— i.e. width, w , height, fh , and length, fx [Perkins and Kern, 

1961; Barrenblatt, 1962; Geertsma and de Klerk, 1969; Nordgren, 1972]. These 

models use two-dimensional, analytical equations where the fracture height is 

required to be input.  

Two major models to describe hydraulically induced fracture propagation in 

rocks were emerged for design purposes [Perkins and Kern, 1961; Geertsma and de 

Klerk, 1969]. These models are called PK (after Perkins and Kern) and GDK (after 

Geertsma and de Klerk). An important forerunner to the GDK model is the work by 

Khristianovitch and Zheltov [1955] who introduced different equilibrium conditions 

[Gidley et al, 1990].  

In the PK model for vertical elastic fracture the assumptions are: a) the fracture 

height is fixed and independent of fracture length, b) the pressure inside the fracture is 

constant over the cross sectional area, and c) the resistance to deformation prevails in 
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the vertical plane. They considered vertically limited fractures perpendicular to the 

direction of propagation (Figure 14). 

 

Figure 14. Schematic representation of linearly propagating fracture with laminar fluid flow 

according to Perkins and Kern model [Adachi et al., 2007] 

The width of the fracture is determined using the solution for a linear elastic, 

isotropic medium, subjected to an in-situ stress h  and constant fracture pressure fp  

with the consideration of the assumptions above. The solution is [Gidley, 1990].  

 1
( ) 1

f

h p x
w x

G x

   
    

 
 (10)

Where h  and fx  are the fracture height and length, respectively, f hp p     is the 

net–pressure and G  is the shear modulus. In this model the fracture opening is 

elliptical and maximum fracture width is given by: 

 1 ( , )
( , )

h p x t
w x t

G

 
  (11)

Geertsma and de Klerk [1969] developed a model for vertical rectangular fracture 

propagation (Figure 15). The assumptions made in this model include: a) a fixed 
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fracture height is assumed, b) the resistance to deformation prevails in the horizontal 

plane only (as a result, fracture width does not depend on fracture height). The width 

of the fracture can be calculated by [Gidley, 1990]: 

0
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0

12
(0, ) ( , )

( , )

x

f
f

q dx
p t p x t p p

h w x t


      (12)

Where 0q  is total injection rate, fh  is fracture height, p  is fracturing fluid pressure 

along the fracture, fp  is fluid pressure at the wellbore, and ( , )w x t  is the local 

fracture width. 

 

Figure 15. Schematic representation of linearly propagating fracture with laminar fluid flow 

according to KGD model [Adachi et al., 2007] 

The above equation is obtained from coupling solid mechanics of the rock and 

fluid flow analysis of the injected fluid. Both of the explained models assume that the 

fracture toughness at the tip of the fracture is negligible compared to the necessary 

pressure required to pump the fracturing fluid and oppose the in-situ stress. Hence, the 

fluid pumped at any stage of the fracturing job creates additional length instantly, 

regardless of the fluid pressure near the crack tip.  

Daneshy [1973] modified the KGD model considering non-Newtonian fluids and 

different pressure distribution functions in the fracture. He further included the 
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proppant transport concepts into his model [Daneshy, 1978]. Whether these models 

are applicable or not can be determined by the match between the predicted and 

observed variation of pressure with time [Lehman et al., 2002; Guo et al., 2007]. In 

the PKN model [Nordgren, 1972] the pressure increases as fracture propagates, 

whereas in the KGD model the pressure decreases with time and fracture propagation. 

A fracture would propagate radially when the injection interval is relatively 

smaller than the thickness of the formation. The modeling of radial fracture 

propagation by the PKN and GDK models differs only because of the hydraulic 

pressure distribution. The fluid pressure travels logarithmically from pressure 0p  at 

the entrance ( wr r ) as a result of viscous flow resistance [Gidley et al, 1990]:  

0 3

6
ln

w

q r
p p

rw




 
   

 
 (13)

 

Figure 16. Schematic representation of radially propagating fracture with laminar flow 

[Courtesy of Prod Tech.] 

The width at the well, (0)w , of a radially propagating fracture is given by: 
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 (14)
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Where the PK approach obtains a value of 7 1.4C   and the GDK approach, a value 

of 2.15.  

2D Fracture Models with Fluid Leakoff 

The basic elements to describe the fluid loss effect on fracture dimensions are 

from Carter’s one-dimensional fluid loss equation. In Carter’s model fracture height 

and width are assumed to be constant; only fracture length ( fx ) is a variable. The 

fluid loss velocity function is then assumed to take the form: 

K
v

t 





  (15)

Where K  is the overall fluid-loss coefficient as measured in laboratory filtration 

tests and   represents the time at which filtration starts. Using the concept of fluid-

loss, Nordgren [1972] modified the PK model to account for the amount of fluid loss 

through the walls of a fracture: 
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Incorporating fluid leak-off into the PK model yields the following equation to 

approximate the fracture width [Nordgren, 1972; Gidley et al, 1990]: 
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 (17)

Where 0q  is the flow rate at fracture entrance. The GDK model, on the other hand, 

assumes that the fluid loss occurs with low loss coefficient and for small treatment 

times. The material balance is considered in the overall form as Carter did; thus, 

incorporating the fluid leakoff into GDK model yields [Gidley et al, 1990]: 
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Where pt  represents the time when the pumps stop. As for a radially expanding 

fracture, it propagates usually during the early stages of the fracture growth (for small 

time), and one can use Eq.19 to relate the width at the fracture entrance and the radius 

R  [Gidley et al, 1990]. 
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Note that the computational models described above assume Newtonian fluid 

flow of the fracturing fluid during fracture propagation. However, most fracturing 

fluids exhibit non-Newtonian behavior in some way [Rajcopal, 2006]. 

Three-Dimensional Hydraulic Fracture Simulation 

During the early period of hydraulic fracturing, simple models (2D) were 

developed to predict the dimensions of a hydraulic fracture based on rock and fluid 

properties, pumping parameters and in-situ stresses [Khristianovic and Zheltov, 1955; 

Geertsma and de Klerk, 1969; Perkins and Kern, 1961; Nordgren, 1972]. However, 

these 2D models are not applicable to simulate both vertical and lateral propagation 

(Figure 17). Therefore, pseudo 3D models were developed by removing the 

assumptions made in the 2D models that had considered constant and uniform height 

[Settari and Cleary, 1986; Morales, 1989; Economides and Demarchos, 2008; 

Pitakbunkate et al., 2011]. The height in the pseudo-three dimensional (P3D) model is 

a function of both position along the fracture and time (Figure 17.(a) and (b)) [Cleary, 

1994; Yang, 2011]. The main assumption in the P3D model is that fracture length is 
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much larger than fracture height, and the difference between P3D and 2D models is 

the addition of a vertical fluid flow component to the formalisms [Carter et al., 1998]. 

Warpinski et al [1994] described the different fracture simulation models including 

P3D and 2D models. 

 

Figure 17. Fracture geometry (a) P3D (cell approach) (d) Global 3D (parameterized) [Yang, 

2011] 

The main disadvantage of the P3D model is that it cannot handle fractures with 

arbitrary shape and orientation. Hence, fully 3D models are required for this particular 

purpose [Clifton and Abou-Sayed, 1979; Ghassemi, 1996; Carter et al., 1998]. Fully 

3D models have been studied thoroughly in the literature; however, these are called 

planar-3D simulators since they cannot model out-of-plane fracture growth (Figure 

18). Other planar-3D models (Figure 19) have been developed by Barree [1983], 

Morita et al. [1988], Advani et al. [1990], and Gu and Leung [1993].  
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Figure 18. Fracture geometry of hydraulic fractures ranging from a single, planar fracture to 

out-of-plane fractures and complex fracture network 
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Figure 19. Fracture geometry models (a) PKN type (b) KGD type (c) Fully 3D (meshed) 

[Yang, 2011] 

On the other hand, Van Damme [1986] presented a fully 3D model in which the 

solid mechanics analysis is handled through the displacement discontinuity method 

(DDM). The main advantage of this model is that it allows out-of-plane propagation 

of the fracture that is not considered in the previous 3D models [Ghassemi, 1996; 

Kresse et al., 2012]. 

Fracturing Fluids and Additives 

Fracturing fluid is pumped into reservoir rock to create hydraulic fractures. To 

achieve successful stimulation, the fracturing fluid must have certain physical and 

chemical properties [Shah et al., 1992; Woodroof et al., 2003; Al-Ghazal et al., 2013; 
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Rahim et al., 2013; Gomez and Patel, 2013; Che et al., 2013]. The functions of a 

fracturing fluid include: a) to initiate and propagate the fracture, b) to develop fracture 

width, c) to transport proppant throughout the length of the fracture, d) to flow back to 

the surface after the fracture treatment is finished that leaves a fracture with maximum 

permeability. To achieve the above, the characteristics of the fracturing fluid should 

be such that 1) fluid is stable with predictable rheology under surface and downhole 

treating conditions and treatment duration, 2) its pressure drop due to friction in 

tubing and flow lines is low, 3) provides fluid loss control, 4) it cleans and easily 

degrade to minimize formation damage to propped fracture. Generally speaking, a 

good fracturing fluid needs to be [Gidley, 1990]: 

 compatible with the formation rock and fluids, 

 capable of suspending proppants and transporting them deep into the fracture, 

 capable to develop the necessary fracture width to accept proppants or to allow 

deep acid penetration, 

 an efficient fluid; i.e. has low fluid loss, 

 easy to remove from the formation, 

 have low friction pressure, 

 easy to be prepared and to perform in the field, and 

 cost effective. 

Compatibility of the fracturing fluid with the reservoir rock and fluid is one the 

most critical characteristics. If the chemical nature of the fracturing fluid causes 

swelling of the naturally occurring clays in the formation, thereby plugging pore 

channels, the treatment will be a failure. If the fracturing fluid causes migration of 

fines and/or clays, the success of the treatment will be nullified [Smith et al., 1964; 

Jones, 1964; Reed, 1972; Gidley et al, 1990; Rajcopal, 2006].  



www.manaraa.com

36 
 

Fluid Rheological Models 

Rheology is the study of the deformation and flow of matters. Matters in this 

context can be solid, liquid, or gas. This term explains the relationship between force, 

deformation, and time and comes from the Greek word “Rheos” meaning to flow 

[Alkhatami, 2007]. The rheological characteristics of a fluid are important in 

evaluating the capability of the fluid to perform a specific function such as its ability 

to transport and suspend solid particles, reduce friction pressure, and control fluid 

loss.  

Generally, fluids can be categorized into two groups: Newtonian fluids and non-

Newtonian fluids. A Newtonian fluid is a fluid whose “shear-stress” versus “rate of 

shear” curve is linear and passes through the origin. A non-Newtonian fluid is one 

whose rheogram (shear stress versus shear rate) is non-linear or does not pass through 

the origin. Most fluids used in the petroleum industry are non-Newtonian fluids which 

can be classified into three groups [Chhabra and Richardson, 1999]: 

 Inelastic fluids whose rate of shear is determined by the shear stress at 

that point (purely time-independent). 

 More complex fluids whose relationship between shear stress and shear 

rate depends upon the duration of shearing and their kinematic history 

(time-dependent). 

 Fluids that are partially elastic and recover after deformation (visco-

elastic) 

In Figure 20 different types of time-independent fluids are shown. The linear 

flow behavior (Newtonian fluids) is also included.  
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Figure 20. Different types of time-independent fluids [Youness, 2005] 

The Bingham plastic model with its two parameters is a time-independent 

rheological model that accounts for the stress required to initiate fluid flow in viscous 

fluids. This initial stress that should be overcome for the fluid flow to occur is called 

“yield stress.” Once the initial stress (yield stress) is overcome, the fluid behaves 

similar to Newtonian fluids whose curve is shown by the linear relationship between 

the applied stress and the rate of shear. The Bingham plastic can be presented as 

follows: 

0 p       (20)

Where   is shear stress, 0  is yield stress, p  
 is plastic viscosity, and   is shear 

rate. Another time-independent rheological model is the power law model which 

expresses a non-linear relationship between shear stress and shear rate that it seems to 
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better characterize the shear-thinning characteristics of drilling fluids. The power law 

model is given by [Dodge and Metzner, 1959; Vassilios, 2003]. 

( )nk    (21)

Where n  is the flow behavior index and k  is the consistency index. In cases where 

1n   the fluid is termed as “pseudoplastic” or “shear thinning” since the apparent 

viscosity for such fluids decreases with increase in shear rate. When 1n  , the fluid is 

termed as “dilatant” or “shear thickening”. Obviously, 1n   indicates that the fluid is 

Newtonian. 

Another model was proposed by Herschel-Bulkley [1926] which is a simple 

generalization of the Bingham plastic model to define the non-linear flow behavior. In 

this model yield stress should be overcome for flow to occur, and the viscosity is 

shear rate dependent (Figure 20). Herschel-Bulkley model is given by: 

0 ( )nk      (22)

This model is widely used in the oil industry for the characterization of hydraulic 

fracturing fluids and drilling fluids. 

Hydraulic Fracture Fluid 

This section discusses the various fracturing fluids, including slickwater, linear 

gel, and crosslinked fracturing fluids. It is followed by a discussion of the additives 

necessary to achieve certain properties. 
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Water-Based Fluid 

Water-based fracturing fluids are commonly used in the industry these days 

[Gupta and Pierce, 1998; Van Gijtenbeek et al., 2006; Hassen et al., 2012]. When 

compared to oil-based fluids, water-based fluids have some advantages: 

a) Water-based fluids are low cost. 

b) The hydrostatic head from water-based fluids is higher than that 

from oil-, gas-, and methanol-based fluids. 

c) Since water-based fluids are incombustible, they are safe. 

d)  Easy to control its viscosity. 

Water-based fluids were initially designed to create hydro-fractures by injecting 

low viscosity fracturing fluid composed of water, surfactants, clay stabilizing agents, 

and friction reducer materials [Mayerhofer and Meehan, 1998]. In the Bakken 

Formation water fracture treatments use slickwater as pad to create the initial fracture 

geometry, followed by linear gel or crosslinked gel [Hassen et al., 2012]. 

Linear Fracturing Fluids 

The need to thicken water to help transport proppant, to decrease fluid loss, and 

to increase fracture width was apparent to early investigators. The water viscosifier 

agents used in the early 60’s were starch guar gum. Guar gum comes from a bean that 

thickens and viscosifies the mixture when added to water. Guar undergoes hydration 

upon contact with water. This unwinds the spiral molecular structure of guar, with 

water molecules attaching themselves to the polymer chain. This, in turn, leads to a 

viscous fluid by interaction of the polymer coils, one to another, in the water-based 

system. [Gidley et al., 1990] 
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Other linear gels used as fracturing fluids are hydroxypropyl guar (HPG), 

hydroxyethyl cellulose (HEC), carboxymethyl HPG (CMHPG), xanthan gum, and in 

some rare cases polyacrilamides [Tiner, 1976; Chatterji and Borchardt, 1981; Ely, 

1981; Gidley et al., 1990]. The structure of the viscosifier agents are shown in Figure 

21. 

 

Figure 21. Chemical structures of guar, HPG, HEC, CMHEC, and polyacrylamides. 

HPG, the most widely used viscosifier for water-based fracturing treatments, is 

obtained by the reaction of propylene oxide with the guar molecules, creating a more 

temperature-stable, and somewhat-higher-viscosity polymer. As noted in some 

research, 1-4% of HPG remains as insoluble product upon complete degradation of 

the polymer [White and Free, 1976; Almond, 1982; Pober et al., 1983; Volk et al., 

1983].  
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Crosslinked Fracturing Fluids 

Using the crosslinked gel was first proposed in the late 1960’s [Wieland, 1971]. 

When using linear gel, the only means to increase viscosity is to increase the polymer 

concentration in the mixture. However, adding proppant and dispersing fluid-loss 

additives into such concentrated solutions of linear fluids is difficult [Grattoni et al., 

2001].  

The development of crosslinked gel (for e.g. crosslinked HPG) has removed 

many of such problems especially when it is intended to operate hydraulic fracturing 

in deep, hot reservoirs, such as the Bakken Formation. The earliest crosslinkers were 

borates and antimony metal crosslinkers. In crosslinked fracture fluids the 

crosslinking reaction—where the molecular weight of the base polymer is 

substantially increased by tying together the various molecules of the polymer into a 

structure through metal or metal-chelate crosslinkers— helps increase the viscosity 

without the need for increasing the polymer concentration [Menjivar, 1986; Bartosek 

et al., 1994; Romero-zeron et al., 1994; Grattoni et al., 2001; Nijenhuis, 2001]. 

The first crosslinked fluid was a guar gum system. The antimony system (a 

system that includes metallic elements, such as Sb) was a relatively-low-pH fracturing 

fluid. The borate fracture fluid was a high pH system, typically in the pH 10 range, 

while the antimony was approximately pH 3 to 5. The disadvantage of both antimony 

and borate systems in the early operations was that the fracturing treatments suffered 

in some cases with incomplete gel degradation. This incomplete degradation resulted 

in producing back very viscous gel that could possibly carry proppant back out of the 

fracture or even plug the fracture either temporarily or permanently [Nijenhuis, 2001].  
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In the 1980’s the use of fracturing fluids with controlled crosslink time, or a 

delayed crosslink reaction, was examined. Crosslink time is simply defined as the 

time required observing a very large increase in viscosity as the fluid becomes rigid. 

Research work by Conway and Harris [1982] indicated that a delayed crosslink 

system allows better dispersion of the crosslinker, yields more viscosity, and 

improves fracturing fluid temperature stability. Another advantage of delayed 

crosslink system is lower pumping friction because of lower viscosity in the tubular 

goods [Conway and Harris, 1982; Harris, 1985; Gidley et al., 1990]. 

The major advantages of using a crosslinked gel versus a linear gel are: a) 

achieving much higher viscosity with crosslinked gel with a comparable gel loading, 

b) a crosslinked gel is more efficient from the fluid-loss point of view, c) a 

crosslinked gel has better proppant transport, d) a crosslinked gel has better 

temperature stability, and e) a crosslinked gel is more cost-effective than a linear 

fluid. For a formation which is deep and with high temperature (such as the Bakken 

Formation) if one requires high fracturing fluid viscosity, the ideal frature fluid would 

be a zirconium or titanium delayed crosslinked system [Harris, 1985; Gidley et al., 

1990]. 

Above all, an ideal fracturing fluid should be moderately efficient. This means 

that a high amount of the fluid should stay in the fracture and not be lost to the 

formation. Fluid efficiency is normally attained by combining high fluid viscosity 

with fluid-loss additives. The fracture volume is created by that portion of the injected 

pad that stays in the fracture and does not leak off into the formation (Figure 22). As 

is shown in this figure, fluid leak-off occurs linearly through the fracture faces, and 

can be defined by a parameter called “fluid loss coefficient” as: 
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.
vol leaked off length

fluid loss coeff
area time time

       
 (23)

This fluid loss coefficient is then used to determine the fluid efficiency: 

frac vol created
fluid efficiency

total fluid pumped
  (24)

 

Figure 22. Fluid leak-off from a longitudinal fracture during a fracturing treatment  

Proppant Transport in Hydraulic Fractures 

The fluid pressure inside the created hydraulic fracture keeps it open during the 

fracturing treatment. The proppant mixed with the fracturing fluid keeps the fracture 

open when pump is shut off after the treatment. Actually, the success of a fracture 

treatment depends on three main factors: a) the propped length of the hydraulic 

fracture, b) the conductivity of the fracture, and c) the propped height of the fracture. 

Fracturing fluid and proppant characteristics together with the amount and their 

injection manner are the controlling parameters for the above factors.  



www.manaraa.com

44 
 

The sequences of events in a hydraulic fracture treatment include: 1) injecting a 

fluid with low viscosity with no proppant for fracture initiation, which is called “pre-

pad”, 2) injecting a fluid with relatively higher viscosity that does not contain any 

proppant in the fracture to help fracture propagation, and is called “pad”, 3) injecting 

slurry into the created fracture that is a mixture of proppant, fracturing fluid, and 

additives. The proppant concentration starts at lower values and increases as the 

treatment progresses. As the slurry moves inside the fracture, the proppant will move 

downward and settle depending on the viscosity of the fracturing fluid. 

A propping agent moving inside the fracture is subjected to three forces: a) 

gravity force, b) buoyancy force, and c) drag force. Fluid and particle characteristics 

are the main controlling parameters for the proppant settlement process. According to 

Stoke’s law, the distribution of proppant (with spherical shape) inside the fracture 

depends on its settling velocity in the fracturing fluid [Gidley et al., 1990]: 
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Where DC  is the drag coefficient, g  is gravity acceleration, pd  is particle diameter, 

tv  is terminal particle-settling velocity, and p  and f  are proppant and fluid 

densities, respectively.  

Note that terminal velocity is the velocity of a single particle in an infinite 

medium. For non-Newtonian fluids, it is assumed that the fluid viscosity ( f ) can be 

replaced with an apparent viscosity ( a ) in Newtonian correlations for estimating the 

particle settling velocity. Some researchers such as Vassilios [2003] embraced this 

approach. The following equation is proposed for single particle settling velocity 

calculation for power-law fluids [Gidley et al., 1990]: 
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Where n  is flow-behavior index and K  is flow-consistency index. For power-law 

fluids one can define the apparent viscosity ( a ), corresponding to the viscosity of 

Newtonian fluids. The apparent viscosity can be calculated from 

  1n
a K     (27)

For Newtonian fluids, the drag coefficient can be obtained as follows: 
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Where Re( )pN  is particle Reynolds number, f  is fluid viscosity, pA  is particle 

frontal area, and dF  is the Drag force. The settling velocity for Newtonian fluids is 

also given by Youness [2005]: 
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The ideal proppant should be strong, resistant to crushing, resistant to corrosion, 

have a low density, and readily available at low cost [Holditch, 2011]. The proppant 

placed in the created hydraulic fracture is under the effective minimum in-situ stress 

( eh ) as fracturing fluid leaks off into the formation. This effective stress is also 

called fracture closing stress (FCS). 
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eh h fFCS p     (31)

Where h  is the minimum horizontal stress and fp  is the fluid pressure inside the 

fracture. A number of materials that best meet these desired traits are silica sand, 

resin-coated sand, and ceramic proppants.  

Depending on the strength of the formation and the type of the proppant, different 

fracture closing state would result (Table 2). Table 2 shows how the resulting fracture 

conductivity is dependent on both the proppant type (quality of the material) and the 

formation rock properties. 

Table 2. Behavior of different proppants under closure stress (Courtesy of Prod. Tech.) 

Hard 

Rock 

Closure Stress 

not Applied 

   

Closure Stress 

Applied 

   

Soft 

Rock 

Closure Stress 

not Applied 

   

Closure Stress 

Applied 

   

The drawbacks of using a wrong type of proppant in the fracturing treatment 

would be: a) crushing of proppants under closure stress that results in reduced 

proppant conductivity, b) deformation of soft proppants which leads to reduced 

fracture width, and hence diminished fracture conductivity, and c) proppant 
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embedment in the fracture wall leads to further reduction of hydraulic fracture 

conductivity. 

The available proppant types used in the industry are listed in Table 3, and the 

effect of fracture closure stress on the propped-hydraulic fracture is illustrated in 

Figure 23. It is clear from Figure 23 that the more rounded a proppant, the higher its 

conductivity. This means that a well rounded proppant has a better strength since the 

closure stress will be spread more evenly on the surface of the proppant, which in 

turn, yields a better fracture permeability. 

Table 3. Cost and resistance to crushing for different proppant types (Courtesy of Prod. Tech.) 

Proppant Type Resistance to Crushing Cost 

Low quality sand (LQS) Low Low 

High quality sand (Ottawa sand)   

Resin-coated sand (RCS)   

Intermediate strength proppant 

(Ceramic) 
  

High strength proppant (Bauxite) High High 

 

Figure 23. Fracture conductivity versus Fracture Closure Stress (FCS) (Courtesy of 

Production Technology) 
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From Figure 23, it can be inferred that: a) the low quality sand— especially when 

it is not well-rounded— will begin to crush at low closure stresses (less than 200 psi), 

b) the higher quality sand, such as Ottawa sand (well-rounded), shows a much higher 

stress resistance, and c) proppants with best quality, such as bauxite, shows negligible 

crushing from closure stress and hence a small amount of deformation.  

Generally, sand is used for hydraulic fracturing shallow formations (for e.g. coal 

seam reservoirs). The best choice for a propping agent in a coal seam reservoir would 

be sand where the reservoir is relatively shallow. Resin-coated sand is used where 

more strength is required since it is much stronger than low quality sand. The resin in 

the proppant acts as a glue to form a consolidated sand pack in the fracture. This will 

help to avoid proppant flow back into the wellbore when the pumping is halted after 

the treatment. It is clearly more expensive than the regular sand. High quality 

proppants, such as ceramic and bauxite, are the strongest in the list above. Ceramic 

consists of sintered bauxite, intermediate strength proppant (ISP), and light weight 

proppants (LWP). These high quality proppants are usually used where the reservoir 

is deep (i.e. more than 8000 ft) and large values of fracture closure stresses are 

applied on the propping agent [Phillips and Anderson, 1985; Montgomery and 

Steanson, 1985; Terracina et al., 2010; Raysoni and Weaver, 2012; Cohen et al., 

2013]. 

Once the characteristics of the proppants, the fracturing fluids, and the formation 

rock are well understood, one can use them for the design of hydraulic fracturing 

treatments.  

 

 



www.manaraa.com

49 
 

Slurry 

Slurry is defined as the mixture of fracturing fluid and proppant, and can be 

categorized into two groups: Newtonian and non-Newtonian slurry. There has been a 

great deal of research examining the increase in the viscosity of a Newtonian fluid 

when mixed with solid particles (proppant) [Einstein, 1956; Landel et al., 1965; 

Thomas, 1965; Howard and Fast, 1970; Nicodemo et al., 1974; Jeffrey and Acrivos, 

1976; Faulkner and Schmidt, 1977; Hannah et al., 1983; Acrivos, 1987; Fang et al., 

1997; Brannon et al., 2005]. 

Einstein [1956] developed an early expression for calculating the slurry viscosity 

which was valid only for infinitely dilute particle concentrations: 

 1 2.5s o s     (32)

Where s  and o  are the viscosities of slurry and carrier fluids, respectively. s  is 

the volume fraction of the solid phase.  

Thomas [1965] presented an excellent correlation of slurry viscosity as a function 

of volume fraction of solids. This correlation is for Newtonian fluids; however, if the 

base fluid and the slurry are evaluated at the same velocity, the relationship will 

reasonably approximate the non-Newtonian, power law case [Hannah et al., 1983]. 

The correlation is as follows: 

 16.621 2.5 10.5 0.00273 s
r s s e        (33)

Where r  is the relative viscosity of the highly solid concentrated slurry to the dilute 

one and s  (the volume fraction of solid) can be converted to oil field unit as follows: 
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 (34)

Where pC  is the proppant concentration added in /lb gal , and p  is the absolute 

density of proppant, in /lb gal  as well.  

Landel et al. [1965] developed an equation from the data of water with suspended 

glass beads and copper powder with the grain sizes ranging from 10 to 100 m  to 

meet the conditions of both infinite dilution and high solid concentrations. Their 

expression is given by: 

2.5

max

1 s
r

s





 

  
 

 (35)

Another expression for zero-shear relative viscosity of slurry was developed by 

Graham [1980] in that he assumed that hydrodynamic forces dominated the fluid flow 

around the particles interactions were also accounted for in his model: 

 2
2.5 1 1 1

1 2.5
1 1 1

r s h h h ha a a a

 
 
          

 (36)

Where h
a  is the ratio of particle spacing to particle radius. For simple cubic packing 

h
a  is given by [Alkhatami, 2007]: 
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 (37)

Frankel and Acrivos [1987] extended the previous research by developing a 

relationship for calculating the slurry viscosity when the solid load is relatively high 
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( maxs ). The relative viscosity of the highly solid concentrated slurry to the more 

dilute one, and for spherical solid particles is given by [Shah, 1993]: 

 
max

1
3

max

9

8 1

s s
r

s s

 
 

 
 
  

 (38)

Some authors believed that slurry viscosity can be a function of flow shear rate— 

even for Newtonian fluids [Nicodemo et al., 1974; Jeffrey and Acrivos, 1976]. 

Correspondingly, it is even more likely to happen that the viscosity of non-Newtonian 

slurry is influenced by its shear rate.  

Actually, slurries exhibit a Newtonian behavior at low volume fractions of solids 

but may exhibit non-Newtonian behavior at high solids concentrations [Ackermann 

and Shen, 1979; Satchwell et al., 1988; Tsai et al., 1989; Agarwal et al., 1990; Dabak 

and Yucel, 1986]. This means that the viscosity equation must incorporate the shear-

rate effect. Above a threshold volume fraction, the rheological behavior of many 

Newtonian slurries can be described by either a pseudoplastic-type model or Bingham 

plastic model [Shah, 1993]. The generalized equation for fracturing fluid rheology is 

given by [Baree and Conway, 1994; Alkhatami, 2007]: 

 
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 (39)

Where on  is the clean fluid power-law flow behavior index, L  is the adjustable 

parameter to match onset of deviation of low shear viscosity from the calculated 

power-law viscosity, H  is the adjustable parameter to match onset of deviation of 
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high shear viscosity from the calculated power-law viscosity, a   is the slurry viscosity 

increase exponent, and nC  is equal to: 

max

v
n

v

C
C

C
  (40)

Where vC  is the volume fraction of solid and maxvC  is the maximum volume fraction 

of solid. 
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CHAPTER III 

HYDRAULIC FRACTURING DESIGN METHODOLOGY 

 

Low permeability shale formations, such as the Bakken, require a large fracture 

network to enhance well productivity. Horizontal drilling and hydraulic fracturing 

play major roles in enhancing the hydrocarbon production from the Bakken 

Formation, Williston Basin. This chapter presents an integrated fracture/reservoir 

simulation, coupled with economic analysis to compare different fracture treatment 

scenarios for Bakken horizontal wells.  

In this research, through a comprehensive fracture-simulation/reservoir-

performance study, we have evaluated the main parameters controlling the fracture 

stimulation in horizontal wells. The main goal was to investigate opportunities to 

optimize hydraulic fracturing and production of horizontal Williston Basin Bakken 

Formation wells. The project area used in the investigation was located in Williams 

County, North Dakota. To design a successful hydraulic fracture treatment, four main 

tasks were carried out: First, a reservoir simulation to evaluate the response of the 

reservoir to fracture stimulation and to calibrate the reservoir model was performed 

using a two steps involving: a) sensitivity analysis (SA) to determine the significant 

well/reservoir properties and parameters and b) history matching (HM) the simulation 

results to the production data from a stimulated horizontal well in the study area.  
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Second, the amount of fracturing materials was estimated and preliminary pump 

schedules were developed based on selected design parameters including: fracture 

half-length, pump rate, and maximum proppant concentration. Next, design 

parameters screen was conducted using 2D fracture geometry solutions for fracture 

treatment parameters. An optimization task was then performed to identify optimal 

stimulation treatment(s) that together with optimal operating conditions would return 

a maximum value for the objective function (i.e. net present value or cumulative oil 

production).  

As a next step, fully-3D hydraulic fracture modeling was utilized to perform 

implicit, coupled, finite difference/finite element solutions to basic conservation 

equations. The pump schedule— obtained from the scoping design— was changed in 

terms of the pad volume and proppant schedule for treatment optimization. The 

overall goal of such a schedule refinement was to place the right amount of proppant 

in the right place along the fracture, leading to fracture confinement in the Bakken 

Formation.  

Finally, a comprehensive approach to the uncertainty assessment of the complex 

numerical simulations was performed which is applicable to support decision- and 

policy-making processes in well stimulation planning. The approach comprised of 

several steps to establish the assessment goals. A surrogate modeling technique along 

with Monte Carlo simulation was utilized for uncertainty assessment of the fracturing 

treatments planned by optimization task. Factor uncertainties were presented 

probabilistically, which were characterized by the principle of probability theory, and 

propagated via Monte Carlo simulation methodology. 
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Introduction 

In recent years, there have been several studies on the simulation of horizontal 

wells in the Bakken Formation [Wiley et al., 2004; Phillips et al., 2007; Besler et al., 

2007; Lolon et al., 2009; Zander et al., 2011]. The main goal in the Bakken reservoir 

studies has been to simulate the production performance of the wells producing from 

the formation, and to come up with best scenarios for further field developments. 

Breit et al. [1992] used reservoir simulation to compare multi-well to single-well 

completions in the Bakken Formation. In their modeling, they considered a 

homogeneous layer with dual porosity and with an anisotropic permeability ratio of 4 

to 1.  

Lentz et al. [2007] described the benefits of re-fracture treatment in horizontal 

wells in the Middle Bakken Formation. They concluded that more perforations and 

diversion techniques would be attributed to the success of the treatments. Besler et al. 

[2007] studied the stimulation and operation of horizontal completions in the Middle 

Bakken Formation of North Dakota and Montana. They compared the production 

histories of the fractured horizontal wells to offset wells completed with other 

techniques to evaluate best industry practices.  

Cox et al. [2008] investigated the production performance of Bakken wells, and 

by using reservoir simulation and pressure transient analysis, they evaluated the 

optimal economics in the early phase of Bakken development. Shanqiang et al. 

[2011], on the other hand, studied more complex fluid flow physics and stimulation 

practices in making long-term production forecasts for unconventional reservoirs. 

They proposed a probabilistic reservoir simulation workflow to provide realistic range 

of production forecast with application in the Bakken Formation. 
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Design of Hydraulic Fracturing Treatment— Recipe for Success 

Hydraulic fracture stimulation is required for economic development of low 

permeability reservoirs, such as the Bakken Formation. This is because a highly 

conductive fracture results in a negative skin. At the same time, there is no single 

fracture treatment design that is best in all possible cases. The amount of knowledge 

about the treatment environment shapes the design process to a very large degree. 

When the area to be hydraulically fractured is new, there are generally a large number 

of potential uncertainties that may have effects on the production responses, such as 

static and dynamic parameters. As an example, Shanqiang et al. [2011] studied these 

uncertainties in the Bakken Formation through the use of a probabilistic reservoir 

simulation technique.  

The best design depends very much on the environment in which the fracture 

treatment will be carried out. The characteristics that define the environment are: a) 

uncontrollable parameters, such as reservoir permeability, reservoir porosity , net sand 

thickness and areal extent, reservoir stress levels, reservoir temperature and pressure, 

reservoir fluid properties, barrier thicknesses, and adjacent barrier stress levels, and b) 

controllable parameters, such as wellbore casing, tubing and wellhead configurations, 

wellbore downhole equipment, lateral length, well spacing, perforation location and 

quantity ( SPF
†), fracturing fluid and proppant characteristics, and fracturing treatment 

rate and pumping schedule.  

Carrying out a hydraulic fracturing job in horizontal wells is an expensive, 

complex undertaking. Hence, the volumes and types of the fracturing materials must 

be determined from a treatment optimization process. Basically, the main stages in the 

                                                 
† Shots per foot 
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creation of a propped hydraulic fracture include: a) the creation of an initial fracture 

of appropriate length and width by pumping fracture fluid called the pad. The most 

common fracturing fluids are water based, crosslinked, polymer solutions (or gels), 

which exhibit highly non-Newtonian rheological properties and appropriate fluid loss 

characteristics, b) the addition of proppant particles to the fracturing fluid at low 

concentrations, c) the increase of pump schedule proppant concentrations to 

compensate some of the proppant settled down due to greater particle density, d) the 

displacement of proppant slurry in the wellbore to the perforations at the end of the 

treatment when fluid injection ceases, and e) the continuation of fluid leak-off ending 

in fracture closure on proppant. 

Conventional perception in designing a hydraulic fracture treatment for Bakken 

horizontal wells would suggest that successful stimulation requires creation of a long 

and highly conductive fracture. This means that we should pump a large volume of 

proppants and fluids at proper concentrations that are properly designed to transport 

the proppants deep into the hydraulic fracture. However, stimulation treatment plans 

are usually made through a comprehensive study including: a) goals descriptions 

(both short- and long-term), b) reservoir/fracture simulations, c) economic study 

(optimization), and d) uncertainty assessment [Allair, 2009; Mian, 2011].  

Reservoir Simulation— Bakken  

Using hydraulic fracture modeling and reservoir simulation, we investigated a 

hydraulic fracture treatment in the Bakken Formation. The main goal was to 

determine if the production performance of the stimulated well could be corrected to 

the type of the fracture fluid and proppants used. The results from this study can be 

used for future field development. Reservoir simulation was coupled with a 
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commercial hydraulic fracture simulator to create an expert system that could be used 

to design an efficient stimulation strategy for Bakken horizontal wells.  

Reservoir simulation was used to perform four major tasks to provide insights 

into the optimization of hydraulic fracturing design. These tasks included: a) 

sensitivity analysis (SA) to determine how sensitive an objective function (an 

expression or single quantity) could be to different parameters and their ranges in 

values, b) history matching (HM) for calibrating the reservoir parameters conducted 

by an automated algorithm so that the simulation model could reproduce reservoir 

observations, c) optimization (OP) stage to come up with best scenarios for future 

hydraulic fracturing treatments, and d) uncertainty assessment (UA) to evaluate the 

impact of uncertainties on the objective function of optimal case(s). 

The project area was located in section 36-T156N-R95W in eastern Williams 

County, North Dakota, on the eastern flank of the Nesson Anticline (Figure 24). The 

main goal in this research was to investigate opportunities to optimize the drilling, 

completion, and hydraulic fracturing treatments of horizontal wells in the Bakken 

Formation. In the area three horizontal wells were drilled and completed two of which 

were put on production and the middle well was used initially to deploy geophones 

for the microseismic monitoring of hydraulic fracture stimulation.  
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Figure 24. Project area location in eastern Williams County, ND [Courtesy of BRC‡] 

The Bakken Formatio Properties— Williams County  

In the study area, the Bakken Formation consists of three members; an upper 

organic shale up to 25 ft thick, a middle silty carbonate and dolomitic/calcareous 

siltstone/sandstone up to 78 ft thick, and a lower organic shale up to 58 ft thick. The 

middle Bakken is composed of five lithofacies and varying in height [Heck et al., 

2002]. All five lithofacies are argillaceous rich and vary in regards to composition 

(Figure 25). Lithofacies 1, 4, and 5 enclose 2 and 3, which seems to contain the target 

zone of production [Gonzales and Callard, 2011]. 

                                                 
‡  Bakken Research Consortium 
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Figure 25. Lithofacies of the Bakken Formation [LeFever et al., 1991; Gonzales and Callard, 

2011] 

For reservoir characterization purposes, a number of studies were conducted on 

the wells by BRC including: taking cores from an interval of 10284-10466 ft (from 

the base of the Lodgepole Formation into the upper Three Forks Formation), 

analyzing the cores in the laboratory to measure porosity and permeability, and 

conducting detailed rock mechanics tests [Sturm and Gomez, 2009]. The properties of 

the Bakken Formation in the study area are shown in Table 4. 

Table 4. Input parameters-- Bakken reservoir model [BRC, 2008] 

Member of the Bakken Fm Upper Middle Lower 

Measured Depth at Top, ft 10,300 10,325 10,403 

Thickness, ft  25 78 58 

Matrix Porosity (%) 3.5-5.9 1.5-8.2 1.0-7.1 

Matrix Permeability, md 0.00008-

0.00018 

0.00017-

0.00373 

0.00008-

0.00026 

Reservoir Temperature, ⁰F 250   

Res. Pressure (at datum), psi 6998 4600 7059 

Water Saturation, Sw (fraction)  0.3 0.3 0.3 

Acreage, ac 320   
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Oil Gravity, ⁰API 42   

FVF, RBBL/STB  1.4   

Rs, SCF/STB 700   

Analysis of borehole image data indicated that both natural and induced 

fracturing would occur within the Middle Bakken [Sturm and Gomez, 2009]. FMI and 

logs run in the Nesson State wells also confirmed the presence of natural fractures in 

this area (Figures 26 and 27). These natural fractures appeared to be enhanced in 

specific lithofacies (brittle calcareous litologies) and by structural bending, but were 

limited in quantity (low fracture density) and were of very small aperture (Figure 28). 

Natural fracture parameters are listed in Table 5. 

Table 5. Natural Fracture Data (Well 41X-36H, Middle Bakken) [Sturm and Gomez, 2009] 

Fracture strike NW-SE & NE-SW  

Mean dip >70⁰ 

Secondary Porosity (%) 0.0003-0.0005 

NF Permeability, md 0.000001-0.001 

NF Spacing (along lateral length), ft 87 - 266 

Fracture aperture, inch 0.00002 – 0.00035 

NF Orientation NW-SE strike (σhmin) 

NF Dip 70⁰-90⁰ 

NF Status All NFs are cemented along fracture faces. 

NF extension All NFs are bed-bound with height < 2f.t 

 

Figure 26. Nesson State 41X-36H lateral stratigraphy [Courtesy of Bakken Research 

Consortium] 
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Figure 27. Natural fracture data in the study area [Sturm and Gomez, 2009] 
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Figure 28. The distribution of natural fracture aperture (Well NS 41X-36H, Middle Bakken) 

[Sturm and Gomez, 2009] 

In an effort to evaluate the reservoir response to hydraulic fracture treatment in 

Bakken horizontal wells, we have utilized reservoir simulation to generate the 

production profile for Well NS 41X-36H. We have used a dual porosity description 

for the purpose of reservoir simulation and history matching the production data.  

A commercial fracture simulator was also used to estimate the created hydraulic 

fracture characteristics. The study well (NS 41x-36H) was completed with a pre-

perforated 5˝ liner. The post completion wellbore construction is depicted in Figure 

29 [BRC, 2008]. Note that the middle wellbore in the project area (Figure 24) was 

being used to conduct microseismic monitoring of the hydraulic fracture stimulation. 

Microseismic monitoring is a useful tool to provide accurate characterization of the 

locations, geometry, and dimensions of the hydraulic fracture system (Figure 29).  
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Figure 29. NS 41X-36H completed wellbore configuration (Courtesy of Headington Oil and 

BRC) 

 

Figure 30. Left: Side view of the hydraulic fracture geometry, Right: Plan view of the 

hydraulic fracture geometry (well NS 41X-36H) (Courtesy of BRC) 

Figure 31 also shows the estimation of stimulated reservoir area (SRA) while 

Figure 32 illustrates the stimulated-fracture-network height (SFNH) from the 

microseismic mapping data of Well NS 41X-36H, from which the SRV (a complex 

3D structure) was approximated. While this method is not an analytically exact 
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calculation, it does provide a fast automated method to approximate a very complex 

3D structure [Mayerhofer et al., 2010]. Note that the hydraulic fractures have 

propagated in the direction of maximum principle horizontal stress which is NE-SW 

in this particular case [BRC, 2008]. 

 

Figure 31. Map view of the induced fracture area (well NS 41X-36H) (Courtesy of BRC) 

 

Figure 32. Side view of the induced fracture area (well 41X-36H) (Courtesy of BRC) 

The stress state of the formation and the geomechanical properties as well as the 

properties of hydraulic fractures in the study area is shown in Table 6. 
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Table 6. Hydraulic fracture simulation parameters  

Parameters Values 

Fracture Closure Gradient, psi/ft 0.7 

Young’s Modulus, MMpsi   

Upper Bakken 3 

Middle Bakken 7.5 

Lower Bakken 3 

Poisson’s Ratio 0.29 

Stress Gradient, psi/ft  

Upper Bakken 0.8 

Middle Bakken 0.7 

Lower Bakken 0.8 

σv, psi 11,000 

σhmin, psi 7,000 

σHmax, psi 7,300 

Hydraulic Fracture Data   

HF treatment technique 1-stage (pre-perforated liner) 

Avg. Height, ft 120 

Fracture half-length (xf), ft 1,500-1,800 

Total proppant, lb 377,000 

SRV, MM ft3 2,925 

Total fracturing fluid, BBLs 7,848 

Avg. propped width, inch 0.105 

Avg. fracture conductivity, md-ft 24 

Figure 33 shows the daily production data for Well 41X-36H, Figure 34 

illustrates the daily oil production rate used as the first well constraint in the 

simulation models, and Figure 35 represents the cumulative production data from the 

well used for history matching purposes.  
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Figure 33. NS 41X-36H daily-production plot (Courtesy of BRC, 2008) 

 
Figure 34. NS 41X-36H daily-oil-production rate (extracted from Figure 33) 
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Figure 35. NS 41X-36H Cum-production plot 

Based on experimental data, simplified models of relative permeability as a 

function of water saturation can be constructed. An often used approximation of 

relative permeability is the Corey correlation which is power-law in the water 

saturation [Brooks and Corey, 1964; Brooks and Corey, 1966]. The relative 

permeability curves were developed using Eqs.153-156 based on the definition of 

normalized water saturation value [Honarpour et al., 1986]. Note that there was no 

experimental data available for the relative permeability curves of the Bakken 

Formation. Hence, the end-point saturations were estimated from history matching the 

simulation results to historical data.  
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Where rocwk  is kro at connate water, rwirok  is krw at irreducible oil, rogcgk  is krog at 

connate gas, rgclk  is krg at connate liquid, wS  is water saturation, wcritS  is critical water 

saturation, oirwS  is irreducible oil for water-oil table, wn  is the exponent for 

calculating krw, orwS  is residual oil for water-oil table, wconS  is connate water 

saturation , orwS  is residual oil for water-oil table, own  is the exponent for calculating 

krow , lS  is liquid saturation, orgS  is residual oil for gas-liquid table, gconS  is connate 

gas saturation, ogn  is the exponent for calculating krog, and gn  is the exponent for 

calculating krg. Also, the linear relative permeability (X-curves) was considered for 

the grids containing the hydraulic fractures. 

Dynamic Modeling and Simulations 

The initial dynamic model (base case) was built using the data available in the 

literature. The base case was used to adjust the well/reservoir properties and 

parameters, and for history matching the reservoir simulation model to production 

history. The model was optimized through three steps before conducting history 

matching. The steps included: a) grid-size sensitivity analysis, b) numerical tuning, 

and c) properties/parameters sensitivity analysis. These calculations were made for 
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improving the numerical stability and run-time optimization. The validated and tuned 

model was then used for history matching and predictive simulations so as to achieve 

optimal fracturing treatments for Bakken horizontal wells.  

Model Optimization and Validation 

The optimization of dynamic model led to high-performance computations where 

we found a set of model specifications, for numerical keywords and structural 

assumptions, which returned minimal run-time and numerical failures. In history 

matching processes, on one hand, the range of parameter values and the number of 

parameter combinations may be too large for analysts to enumerate and test all 

possible scenarios, so they need a way to guide the search for good solutions. On the 

other hand, without model optimization, a simulation case may be too complex to be 

modeled. For this, the dynamic model was optimized and validated by using the 

dynamic modeling workflow depicted in Figure 36.  
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Figure 36. Workflow of dynamic simulation  

Grid-Size Sensitivity Analysis 

The grid size sensitivity is of prime concern in reaching reasonable grid size in 

any simulation study. It was intended to compare various grid sizes so that sufficiently 

large grid size could be determined. Three grid resolutions were examined: 100 by 

100 ft, 200 by 200 ft, and 400 by 400 ft.  

Fine grid:   100 × 100 ft;  total 75,472 cells (includes refined cells)  

Medium grid:  200 × 200 ft;  total 30,200 cells (includes refined cells) 

Coarse grid:  400 × 400 ft;  total 9,760 cells (includes refined cells) 

To examine the impact of grid size on reservoir performance, the cumulative 

production trends (Cum_Oil, Cum_Gas, and Cum_WTR) from the different cases were 

obtained and compared to each other (Figures 37-39).  
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Figure 37. Sensitivity analysis on grid size— Cum Oil Prod 

 
Figure 38. Sensitivity analysis on grid size— Cum GAS Prod 
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Figure 39. Sensitivity analysis on grid size— Cum WTR Prod 

From these figures (37-39), it can be concluded that the medium grid size would 

yield adequate accuracy with regard to the cumulative production. The coarse grid 

size indicates under-prediction of recovery. Thus the 200 × 200-ft grid resolution was 

chosen for further simulations in this project. 

Numerical Tuning 

The optimization of numerical settings was conducted to improve the run-time of 

the simulations. For the Bakken project, various numerical key words, such as 

pressure change, saturation change, and the tolerance of convergence over each time 

step were examined to tune the numerical settings in the simulation runs [Hutchinson, 

1989; LeDimet et al., 1995; Griffith and Nichols, 1996]. The optimization of critical 

points used in the project included material balance error, central processing unit 

time (CPU), and solver failure percent. The original run-time on a single job with 200 

× 200-ft grid resolution prior to the numerical tuning was almost 3.3 hours over an 8-
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month simulation period (Figure 40). After numerical tuning, up to 69% reduction in 

the run-time was achieved. 

 

Figure 40. Numerical tuning of the reservoir model to improve run-time and solver failures 

Sensitivity Analysis of the Reservoir Properties and Parameters 

Sensitivity analysis is used to ascertain how a given model output depends upon 

the input parameters. This is an important method for tracking the significant 

parameters as well as a powerful tool for checking the reliability of the analyses 

[Saltelli et al., 2004]. It will help reservoir modelers to achieve a better understanding 

of how different parameters influence the reservoir responses. The information from 

such analysis can later be used in other tasks, such as History Matching, Optimization, 

and Uncertainty Assessment as it helps determine which parameters to vary and to 

what degree.  
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A sensitivity analysis was conducted on the Bakken project. The parameters 

which were found significant were allowed to change over a realistic range during the 

history-matching process, which will be discussed later in this chapter. The ranges 

were selected based on the geology and the nature of the Bakken Formation that 

reflected close behavior of such an unconventional reservoir.  

Sampling Method 

For a given set of parameters and sample values, the parameter space is usually 

very large, and it would be too perplexing to select a reliable design (the set of job 

patterns). According to the theory of experimental design, an efficient design should 

have two characteristics to be acceptable [McKay et al., 1979; Lawson and Erjavec, 

2001; Cioppa, 2002;]: 

a) The input parameters should be approximately orthogonal. This means that in a 

design matrix, the correlation between the vectors of any pair of columns should 

be either zero or very small. An orthogonal design is very worthwhile in that it 

ensures independence among the coefficients in a regression model or Response 

Surface (RS). The correlation between two vectors 1 2 3( , , , ...)v v v v


 and 

1 2 3( , , , ...)w w w w


 is given by the Orthogonality Index (OI) as below [Computer 

Modeling Group, 2012]: 
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Where v  and w  are the averages of the two vectors. Generally, to ensure the 

accuracy of sensitivity analysis and uncertainty assessment results, the maximum 

pair-wise correlation of the design should be less than 0.15. 

b) The sampling points (job patterns) should be evenly distributed in the parameter 

space. Or, in other words, the job patterns should represent all the possible job 

patterns (space-filling). The space-filling of the design in our simulation was 

assessed by the Euclidian minimum distance [Marie Deza and Deza, 2009] which 

is the minimum Euclidian distance of all design points (job patterns). This means 

that no two points are close to each other.  

One common method to select a job pattern is random design, but its main 

disadvantage is that the interpretation of the results cannot be justified due to random 

confounding and the estimated coefficients can be biased [Cioppa, 2002]. To avoid 

such a problem of random design, we have used Latin hypercube sampling method 

proposed by Mckay et al. [1979], in that the input variables are considered to be 

random variables with known distribution functions. The parameters whose changes 

were examined in the sensitivity analysis are listed in Table 7. Each parameter was 

given a range of values over which it could vary. 

 

 

 

 

 

 

 



www.manaraa.com

77 
 

Table 7. Parameters and properties examined in the Sensitivity Analysis & History Matching 

Parameters Base Value 
Lower Level    

(-1) 
Upper Level    

(+1) 
History-
Matched 

PorMtrxMultplier 1 0.5 10 10 

PermMtrxMultplier 1 0.5 10 10 

PorFracMultplier 1 0.5 10 10 

PermNatFrac 0.001 0.00001 0.01 0.001 

KvKhRatio 0.1 0.01 0.5 0.1 

CPor_Mtrx 1.00E-06 2.00E-06 8.00E-06 8.00E-06 

CPor_NatFrac 5.00E-06 1.00E-06 1.00E-05 2.00E-06 

DI_NatFrac 200 100 1000 1000 

DJ_NatFrac 200 100 1000 500 

DK_NatFrac 50 20 500 185 

Rel. Perm. Table -- Matrix 

swcon 0.1 0.05 0.2 0.1 

swcrit 0.3 0.25 0.45 0.3 

soirw 0.1 0.05 0.25 0.10 

sorw 0.25 0.25 0.45 0.25 

soirg 0.1 0.05 0.25 0.1 

sorg 0.4 0.25 0.45 0.4 

sgcon 0 0 0.02 0 

sgcrit 0 0.01 0.06 0 

krocw 1 0.3 1 1 

krwiro 0.3 0.2 0.7 0.6 

krgcl 1 0.4 1 0.9 

krogcg 1 0.3 1 1 

nw 2 1 3 1 

no 3 2 5 3 

nog 2 1 3 2 

ng 2 1 3 2 

Rel. Perm. Table – Nat. Frac. 

sgconf 0 0 0.01 0 

sgcritf 0 0.01 0.06 0.06 

sorgf 0.4 0.25 0.45 0.35 

soirgf 0.1 0.05 0.25 0.15 

sorwf 0.25 0.25 0.45 0.3 

soirwf 0.1 0.05 0.25 0.1 

swcritf 0.3 0.25 0.45 0.40 

swconf 0.1 0.05 0.25 0.05 

krgclf 1 0.4 1 0.90 

krogcgf 1 0.3 1 0.90 

krwirof 0.3 0.2 0.7 0.55 

krocwf 1 0.3 1 0.9 

nwf 1.5 1 2 2 

nof 1.5 1 2 1.5 

nogf 1.5 1 2 2 

ngf 1.5 1 2 1.5 

Swtr(i) 0.2 0.3 0.4 0.37 

Hyd. Frac. Cond. (kfw), md-ft 22 22 500 22 

SRV, million cu ft 2900 2000 3500 3200 

Fracture spacing, ft 300 100 300 300 

Fracture half-length 1500 1000 2000 1500 
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The results from 2300 simulation runs were collected and were investigated to 

screen the parameters (factors) which appeared to have significant effects on the 

response (objective function). The statistical significance of each effect and 

interaction was judged by comparing its signal-to-noise t-ratio, Et  (or 1nt  ), to the 

critical t-value, denoted by *
/2t . When the population standard deviation ( ) is 

unknown (i.e. small samples, or small n ), we can replace it by an estimate, ps , then 

the quantity in Eq.46 follows the Student’s T-distribution with 1n  degrees of 

freedom (for n  runs) [Lawson and Erjavec, 2001].  

1, / 2
o

n

p

Y
t

s n








 
(46)

Note that the significance level ( ), which is left to the investigator, was 

considered to be 5% as reasonable accuracy was required. Finally, we used a Tornado 

chart of the effects to determine the magnitude and the importance of the effects on 

the cumulative oil and cumulative water production. The chart displays the value of 

the effects. Any effect that extends past critical value is potentially important (Figures 

41 and 42). From such sensitivity analysis, the significant parameters were found as 

listed in Table 7. The tornado plots in Figures 43 and 44 show only the significant 

parameters obtained from the t-test.  
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Figure 41. Tornado plot of Cum_OIL (linear model t-ratios) 

 
Figure 42. Tornado plot of Cum_WTR (linear model t-ratios) 
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Figure 43. Tornado plot of Cum_OIL (reduced model) 

 
Figure 44. Tornado plot of GlobalObj function (reduced model) 
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History Matching 

As a well-examined technique, history matching is a method of adjusting, or 

tuning, reservoir characteristics (properties) to match historical field data through an 

iterative trial-and-error process. The sensitivity analysis above helped us to find the 

significant parameters, as shown in Table 7. These parameters were then altered over 

realistic ranges in order to achieve a close match between the simulation results and 

field data. On the other hand, the insignificant parameters were set to constant values 

which were figured from the available data.  

In the history matching process implemented in this study a global objective 

function was used to measure the relative difference between historical data and 

simulation results. In such a function the well variables are accounted for by means of 

a root-mean-squared error method (RMSE). Small values of objective function 

correspond to small differences between historical data and simulation results that is 

the main goal of history matching effort. The global objective function is given by 

Yang et al. [2007]: 
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Where, subscripts w, p, and t are well, production data, and time, respectively, )(wN  
is 

the total production data from well 1 to w, pwW ,  is weight, ),( pwT is the total of time 

step, s
tpwR ,,  

represents simulation results while m
tpwR ,,  is measured historical data, 

m
pwR ,  is the measured maximum change for well w and production data p, and m

pwE ,  

is measurement error. The global objective function in Eq.47 was used for history 
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matching only Cum_OIL and Cum_WTR data of Well 41X-36H. By forcing the well 

to produce at historic oil rates the reservoir model was matched to the production 

history. The results are shown in Table 7. 

History-Matching Procedure 

To accomplish the history match of Well 41X-36H data, the cumulative oil 

production and the cumulative water production were compared to the observed field 

data. The concept of stimulated reservoir volume (SRV) was employed by assuming 

that a complex network of fractures would be created around the wellbore in such a 

shaly formation— through opening the micro-fissures/micro-fractures (natural 

fractures), and/or through the shear slippages of natural fractures within weak zones 

[Fisher et al., 2004; Mayerhofer et al., 2010].  

This type of complex fracture network may look like a shattered windshield 

(Figure 45). Such a complex fracture network in many shaly formations are 

envisioned to be similar to that in a shattered glass, forming a series of flow paths 

reaching out a few hundred feet from the wellbore as confirmed by microseismic 

monitoring of the fracture treatments [King, 2012]. The microseismic events are 

created mainly as a result of shear slippages induced by altered stresses near the tip of 

the fractures (Figure 18), and shear slippages related to leakoff-induced pore-pressure 

changes. Since in tight shale reservoirs (the Bakken) the diffusivity-related pore-

pressure changes would not move far from the actual fracture planes, the cloud of 

microseismic could be approximately equivalent to the actual fracture network size 

[Mayerhofer et al., 2010]. 
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Figure 45. Similarity between SRV and a shattered windshield [King, 2012] 

The size of a complex fracture network can be estimated as the 3D volume of the 

microseismic-event cloud. It is important to note that the SRV is just the reservoir 

volume affected by the stimulation. Along with SRV, fracture spacing and 

conductivity within a given SRV are important as well [Mayerhofer et al., 2010]. In 

this study, history matching was used to calibrate the reservoir model by way of an 

automated algorithm so that the reservoir observations were close enough to the 

calculated values. The value of SRV estimated from the history matching procedure is 

given in Table 7. 

In the history matching process an automatic procedure was utilized to adjust the 

well/reservoir properties and to calibrate the reservoir model. Each simulation run 

generated a new set of input parameters which was evaluated for a next iteration 

[Landa and Guyaguler, 2003]. Figure 46 demonstrates the steps of the history 

matching procedure. The procedure repeats until the difference between historical 

data and simulation results become negligible that is figured by the global objective 

function error, given by Eq.47. 
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Figure 46. History-matching algorithm 

In this procedure, sensitivity coefficients were used to construct a response 

surface or a proxy model, honoring the exact data values for the simulated 

combinations of the parameters. Response surfaces were constructed by the method of 

ordinary kriging to approximately reproduce costly reservoir simulation outcomes, 

which were actually utilized as surrogates or proxies to full simulations. The kriging 

method is a geostatistical estimator that infers the value of a parameter (random field) 

at an unobserved (un-simulated) location [Deutsch and Journel, 1998]. Experimental 

design was used to produce the most informative response surface given a limited 

number of actual simulation runs. In fact, the response surfaces were used to generate 

data for the numerical simulator at un-simulated points.  

In most of the applications of response surfaces in reservoir engineering, the 

response surface is some form of a polynomial. However, the choice of the function to 

construct the response surface and the location of the sample points are critical in 
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obtaining a good proxy model for our study. For this, the ordinary kriging algorithm 

was used to construct the proxy model due to these features: a) kriging is data-exact, 

b) kriging can represent multi-dimensional data, c) it can handle irregular data, and d) 

it can be numerically constrained the gradient of data [Landa and Guyaguler, 2003]. 

History-Matching Results 

Final history matching plot in Figure 47 shows the convergence of the objective 

function after 1467 iterations. Indeed, the small variation in the values of red dots, 

shown in Figure 47, indicates that the reservoir model can represent the actual 

reservoir case. 

 

Figure 47. Final history-matching iteration of 1467 jobs showing the convergence of the 

objective function (red dots represent the cases with the lowest error values) 

Using the history matching approach shown in Figure 46, the well/reservoir 

parameters for the studied sector of the Bakken Formation were estimated, as shown 
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in the far right-hand column of Table 7. As depicted in Figures 48, 49, and 50, 

reasonable matches were obtained for OIL_PROD, Cum_OIL and Cum_WTR trends.  

 

Figure 48. Oil production rate history match 

 

Figure 49. Cumulative oil production history match-- oil production rate constraint 
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Figure 50. Cumulative water production history match-- oil production rate constraint 

The reservoir description obtained from the above history-match process was 

then utilized to forecast production performance— for the purpose of optimizing the 

hydraulic fracturing treatments in Bakken wells. Also, the relative permeability 

curves— estimated from history matching— for matrix, natural fracture system, and 

hydraulic fractures are demonstrated in Figures 51-56. 
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Figure 51. Relative permeability curves for matrix— water-oil system 

 

Figure 52. Relative permeability curves for matrix— gas-liquid system 
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Figure 53. Relative permeability curves for natural fracture system— water-oil system 

 

Figure 54. Relative permeability curves for natural fracture system— gas-liquid system 
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Figure 55. Relative permeability curves for hydraulic fractures— water-oil system 

 

Figure 56. Relative permeability curves for hydraulic fractures— gas-liquid system 
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Hydraulic Fracturing Design Optimization 

In fact, there is no single fracture treatment design that is best in all possible 

cases. While in vertical wells the primary way to increase fracture network-size and 

production rate is executing larger fracture treatments, in horizontal wells other 

optimization opportunities are provided owing to the geometry of such type of wells, 

such as longer laterals and more stimulation stages [Wiley et al., 2004; Mayerhofer et 

al., 2010; Zander et al., 2011].  

Mayerhofer et al. [2006] presented reservoir simulation studies in which they 

investigated the impact of different fracture-network properties. They showed that 

well production can be enhanced by long effective fractures, forming large networks 

inside a tight formation. The challenge in designing a successful hydraulic fracture 

treatment for Bakken horizontal wells lies in understanding the practical and physical 

limitations of what is possible in terms of fracture-network size (SRV) and hydraulic 

fracture parameters, at reasonable operational costs. The following key parameters 

may be addressed in the design optimization of hydraulic fracturing treatments for 

Bakken horizontal wells: 

a) Fracturing fluid properties (fluid rheology, injection rate, and fluid leakoff),  

b) Proppant properties (proppant type and size), 

c) Horizontal well parameters (spacing and number of wells), 

d) Fracture properties (SRV, fracture spacing, conductivity, and half-length), and 

e) Economic optimization (NPV). 

In hydraulic fracturing optimization two important notions should be considered: 

a) there is no fundamental difference between hydraulic fracturing in high-

permeability and low-permeability reservoirs (i.e. only the fracturing execution issues 
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need to be figured out), and b) for any fracturing materials (proppant and fluid) there 

exists only one optimal fracture geometry that would give us optimal production rate 

[Wiley et al., 2004; Marongiu-Porcu, 2009; Mayerhofer et al., 2010; Zander et al., 

2011].  

Optimal Treatment Materials 

We have examined hydraulic fracturing designs for a Bakken horizontal well 

with a 10,000-ft lateral drilled inside a 1280-acre drainage area. The goal of the design 

was to consider all the plausible combinations of fluids and proppants to find the best 

candidates of treatment materials. Improper fracturing design can result in fractures 

that are too narrow that may cause proppant bridging and screenout or too wide that 

can allow too much proppant settling. In this study we have done a comparative study 

for selected proppants, pads, and fracturing fluids to determine the best 

combination(s) for carrying out the stimulation job for Bakken horizontal wells. 

The first step was to use 2D fracture simulation method (PKN model in this case) 

to quickly perform the sensitivity analysis, preliminary designs, and calculating the 

fracturing material sizes prior to performing fully-3D fracture modeling. Table 8 

shows the results of the scoping calculations that were carried out for 27 combinations 

of the candidate fracturing materials.  
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Table 8. Comparison of different fracturing treatments—for each fracture stage 

NO. Cases xf 
kfw 

(md-ft) 
Vf_total 
(M-Gal) 

mp 
(M-lbs) 

HHP 
Material Cost 

($) 

1 
Slickwater 

20/40 Ottawa Sand 

500 261 11.3 32.3 9164 $338,463 

2 1000 260 22.6 64.4 9101 $341,038 

3 1500 297 38.2 110.3 9204 $351,700 

4 
Slickwater 

16/30 RC Sand 

500 1039 11.3 32.3 9168 $344,745 

5 1000 1035 22.7 64.3 9104 $353,362 

6 1500 1183 38.4 110.2 9208 $372,789 

7 
Slickwater 

20/40 Ceramic 

500 824 10.8 32.3 9130 $345,901 

8 1000 828 21.9 64.9 9075 $357,612 

9 1500 946 37.1 111.3 9175 $380,716 

10 
50# Linear HPG 

20/40 Ottawa Sand 

500 157 7.4 19.4 8814 $325,526 

11 1000 197 17.9 48.6 8925 $336,430 

12 1500 225 30.2 83.4 9003 $347,381 

13 
50# Linear HPG 
16/30 RC Sand 

500 623 7.4 19.3 8816 $329,253 

14 1000 782 18 48.6 8928 $345,805 

15 1500 894 30.3 83.3 9006 $363,337 

16 
50# Linear HPG 
20/40 Ceramic 

500 498 7.2 19.5 8798 $330,156 

17 1000 626 17.4 49.1 8906 $348,895 

18 1500 715 29.3 84.1 8981 $369,083 

19 
30# XLink Gel 

20/40 Ottawa Sand 

500 261 11.3 32.3 9164 $342,870 

20 1000 319 27 78.9 9339 $362,368 

21 1500 359 45.1 133.2 9459 $381,940 

22 
30# XLink Gel 
16/30 RC Sand 

500 1039 11.3 32.3 9168 $349,152 

23 1000 1271 27.1 78.9 9344 $377,589 

24 1500 1430 45.3 133.2 9465 $407,562 

25 
30# XLink Gel 
20/40 Ceramic 

500 824 10.8 32.3 9130 $350,113 

26 1000 1008 26 79 9298 $381,737 

27 1500 1134 43.4 133.4 9413 $415,491 

The financial analysis was conducted to evaluate the costs and benefits associated 

with each hydraulic fracturing design. The expenses considered for fracturing job 

economic analysis and gross treatment sizing were restricted to four major 

components: a) fluid cost, b) proppant cost, c) pumping charges, and d) gross 

equipment charges. Therefore, the job cost is the sum of all these expenses. The 

treatment costs per fracture stage are shown in Table 9. All cost values used are 

general averages based on personal communications with some companies operating 

in Western North Dakota. 
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Table 9. Cost of fracture treatment & completion used in the economic study. 

Components Cost 

Fixed Cost $400,000 

Drilling & Completion   

Lateral length=4500 ft $5,500,000 

Lateral length=10000 ft $8,500,000 

Proppants  

Ottawa Sand $0.09-0.12/lb 

Resin-Coated Sand $0.25-0.31/lb 

Ceramic $0.32-0.39/lb 

Fluid  

Slickwater $0.09/gal 

Linear HPG $0.32/gal 

Xlinked Gel $0.48/gal 

Pumping charges  $36.40/HHP  Includes all pump EQP 

Other parameters used in the economic analysis are shown in Table 10. 

Table 10. Other parameters used in the economic analysis. 

Parameter Value 

Oil Price, $/STB 96 

Water disposal/process, $/STB -3 

Monthly Operational Cost, $ -7,900 

Operational Expenses ( of ) 0.2 of annual revenue 

Interest Rate ( i ) 10% 

Royalty ( f
r

) 3/16 of annual revenue 

An optimization task was then conducted to identify optimal stimulation plan 

(fracture treatment design), drilling and completion plans, and operating conditions 

(flowing bottomhole pressure) that would yield maximum value for the objective 

function, being net present value (NPV) in this study. Equation 48 gives the 

equivalent net present value (NPV) of a future value at n  equal consequent intervals 

of time, t , from present time with the constant interest rate i  per interval prevalent 

during the total time, n t . Note that interest rate is an identifiable measure of the 

earning power of money and is defined as an extra amount of money paid to the 

lender for the use of money during a specified period of time [Ardalan, 2000].  
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Where Rn , the expected revenue earned in each interval of time t , is given by 

[Marongiu-Porcu et al., 2008]: 

     R $ 1 1 1n H H r o tV f f f     (49)

Where HV  is the cumulative volume of hydrocarbons produced in the reference year, 

$H  is the unitary revenue for the produced hydrocarbon, f
r

 is the fraction of gross 

cash flow due to the lease owners and/or to the foreign nation governments as 

royalties, of  is the fraction of gross cash flow to be allocated as operative 

expenditures, and tf  is the fraction of grow cash flow due as taxes in the relative 

fiscal regime.  

In the optimization task we used the history matched reservoir model to forecast 

the reservoir response to different hydraulic fracturing strategies. The main goal was 

to determine the best completion and fracture treatment(s), and optimal drawdown 

pressure that would yield the highest profit from the well stimulation plan(s). The well 

was operated at bottomhole pressures of 1000, 1500, and 2000 psi during a 5-year 

time period. The NPV was made up of three terms: a) the value of the oil produced— 

being $96/STB, b) the cost for water disposal/processing— being $3/STB, and c) the 

capital expenses (CapEX) (Table 9). The annual interest rate for calculating the 

discounted NPV used in this study was considered as 10%. 

The method of “Latin hypercube plus proxy optimization” (LHPO) was used to 

find the optimal treatment scenario(s). This method consists of four main steps: a) 
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constructing combinations of the input parameter values to obtain the maximum 

information from the minimum number of simulation runs (Latin hypercube design), 

b) building an empirical proxy model by using the data from Latin hypercube design 

runs (proxy model), c) conducting a proxy-based optimization, and d) validation of 

the optimal solution obtained from the proxy by iterative simulation runs. A flow 

chart of LHPO algorithm is shown in Figure 57. 

 

Figure 57. The algorithm of Latin hypercube plus Proxy Optimization [Computer Modeling 

Group, 2012] 

Figure 58 shows the well and fracture spacing configurations. A total of three 

well scenarios were considered for the optimization. Scenario w_1 had one lateral, 

scenario w_2 had two laterals, and scenario w_3 had three laterals, each of which was 

10,000 ft long. All these scenarios were completed with 12, 18, and 36 fracture stages.  
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Figure 58. Well and fracture spacing setup (top view)— 12 fracture stages 

Figures 59-62 show the results of the NPV calculations using the Latin hypercube 

algorithm, with three different bottomhole flowing pressures.  

 
Figure 59. NPV optimization of hydraulic fracture treatment with 1000wfp psi — red dots 

are the optimal solutions (job-IDS 73 and 121) 
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Figure 60. NPV optimization of hydraulic fracture treatment with 1500wfp psi — red dots 

are the optimal solutions (job-IDS 40 and 149) 

 

Figure 61. NPV optimization of hydraulic fracture treatment with 2000wfp psi — red dots 

are the optimal solutions (job-IDS 147 and 150) 
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Figure 62. NPV comparisons for the cases with differing number of wells and different 

bottomhole flowing pressures 

It took the iterative procedure 567 (=3*189) runs to optimize the NPV from 17 

million to almost 84 million USD. The comparison figures above show that the job-

IDs 40, 73, 121, 147, 149, and 150 with the specifications shown in Table 11, 

outperformed all other treatment cases. Figure 62 also shows how a change in flowing 

bottomhole pressure would change the wells performance.  

Table 11. Optimal fracture treatment cases—2-well completion plan 

Job ID 
Bottomhole 

pressure,     
(psi) 

Xf,    
(ft) 

Fracture 
conductivity,   

(md-ft) 

Fracturing 
fluid Type 

Proppant 
Type 

Number 
of stages 

40 1500 

1000 

1008 

Xlinked gel 

Ceramic 

36 

73 1000 1271 RC Sand 

121 1000 1008 Ceramic 

147 2000 1271 RC Sand 

149 1500 1271 RC Sand 

150 2000 1008 Ceramic 

Table 11 shows that the two-well completion plan with using crosslinked gel and 

either resin-coated sand or ceramic, as treatment materials, appeared to be the best 

case scenarios owing to higher cumulative oil produced in the 5-year time period 
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(Figure 63). Note that the majority of the data from Bakken show more fractures 

propagating in a transverse direction [Besler et al., 2007]. Hence, the fluid flow 

should be improved by means of wider fractures, cleaner fluids, or better proppants. 

One of the major problems some operators in Western North Dakota encountered was 

the proppant flowback and they had to overflush their treatments to reduce the 

proppant flowback. This would result in loss of fracture width near the wellbore. 

However, with ceramic proppants, no proppant flowback was observed and therefore, 

there was no need to overdisplace the treatments [Lolon et al., 2009]. 

 

Figure 63. CUM_OIL comparisons— optimal cases versus base case 

The cross plots in Figures 64 and 65 show the results of post-process analysis of 

the optimization task. Figure 64 shows the relationship between NPVs and capital 

cost (investment). This figure shows that we would make higher profits if we invested 

on better fracturing materials, which is what we expect to see in optimal cases. On the 

other hand, Figure 65 shows the cross plot of NPVs versus different hydraulic fracture 



www.manaraa.com

101 
 

treatments. As is depicted only two cases turned out to be the optimal fracturing 

treatments. 

 

Figure 64. Cross plot of NPV versus Capital Cost 

 

Figure 65. Cross plot of NPV versus fracturing treatment scenarios 
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Hydraulic Fracture Simulation 

The optimal fracture treatment materials were determined by integrating fracture 

modeling (PKN model) with reservoir simulation, discussed above. As a next step, 3D 

fracture simulation was performed to model the created hydraulic fracture so as to 

find the best pump schedule. Figure 66 shows a log style illustration of the major data 

that were input into the fracture model as compared to depth in the study area. The 

geologic model is comprised of five layers with differing stresses, permeabilities, and 

moduli. They are: Lodgepole, Upper Bakken, Middle Bakken, Lower Bakken, and 

Three Forks. 

 

Figure 66. Input parameters for fracture geometry modeling— Well 41X-36H 

The multi-layer model shown in Figure 66 was intended for detailed final fracture 

treatment design. The data of the layers used in the fracture simulations are shown in 

Table 12. 
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Table 12. Formation layer data - multi-layer height growth 

Depth (ft) Thickness Stress (psi) Gradient Modulus Toughness Loss Coef. 

Top Bottom (ft) Top Bottom (psi/ft) (MMpsi)(psi*sqrt(in)) (ft/sqrt(min))

10200 10300 100 7752 7828 0.76 9.0 2000 0.00003 
10300 10325 25 8240 8260 0.80 3.0 1807 0.00001 
10325 10403 78 7227 7282 0.70 7.5 2500 0.00003 
10403 10461 58 8322 8368 0.80 3.0 1600 0.00001 
10461   7845  0.75 7.5 2000 0.00003 
FORMATION: Permeability (md) 0.003 

TEMPERATURE: Bottom Hole (°F) 255 
PRESSURE: Reservoir Pressure (psi) 4600 

 Closure Pressure (psi) 7255 
DEPTH: Well Depth (ft), TVD 10364 

Since the estimation of fracture geometry plays a major role in evaluating the 

completion plans, a commercial hydraulic fracture simulator was used to help 

estimate the created fracture geometry and its characteristics. To evaluate the success 

of a fracture treatment in a horizontal well, the production response of the well to the 

presence of hydraulic fractures should be investigated. First, we need to know the 

fracture geometry and fracture conductivity. This information comes from fracture 

geometry models that range from simple hand calculation procedures (2D models) to 

complex 3D models (pseudo-3D or fully 3D) that must be run on powerful computers.  

Fluid injected at the beginning of the fracturing job (pad) initiates and opens up 

the fracture. The pad provides the necessary extra fluid that is leaked off into the 

formation during a treatment. It also generates sufficient fracture length and width to 

place the proppant. If the pad volume was too small, the treatment would screen out. 

If the pad volume was too large, we would waste money, the fracture height would 

grow into the unwanted zones (i.e. the Lodgepole), and the fracture would not close as 

rapidly as it would with a smaller pad volume.  

After pumping the specified volume of pad, the proppant concentration is ramped 

up step-by-step as the slurry is being injected. If proppant prematurely bridges in the 

fracture during the pumping, the treating pressure will rise rapidly to the technical 
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constraint due to a situation called screen-out. For calculating the ramped proppant 

schedule material balance method was used, such as the power-law method of Nolte 

[1986]. The power-law method is explained thoroughly by Economides et al. [2002] 

(Table 13). 

Table 13. Developing proppant schedule using power-law method [Economides et al., 2002] 

a) Calculation of the exponent of proppant concentration curve:                                            
1

1

e

e










 

b) Calculation of pad volume and pad pumping time:                                   V Vpad i       , t tpad i  

c) Mass per unit of injected slurry volume:                                                               
pad

pad

t t
c c

t t
e

e







 
  
 

 

d) Converting the concentration from mass per slurry volume into mass added per unit volume of 

base fluid ( ac ):                                                                                                         
1

a

p

c
c

c





 

In an ideal pump schedule, the proppant schedule should be designed such that a 

uniform proppant concentration is obtained in the fracture and a minimum pad 

volume is used that the optimal proppant schedule makes use of that minimum pad to 

place the desired fracture half-length ( _f DesignX ). In the end, the pump schedule 

designed for the selected treatment scenario (optimal treatment case) was developed 

as shown in Figure 67 with the details presented in Table 14. Obviously, a pump 

schedule may vary based on the fracturing treatment materials, and/or based on the 

desired fracture half-length and fracture conductivity. Additionally, Tables 15 and 16 

present the characteristics of the fluid and proppant used for the treatment. 
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Figure 67. Developed pump schedule using Nolte method. 

Table 14. Pumping schedule using Nolte method [1986] 

Slurry 
Vol 

(M-Gal) 

Fluid Vol 
(M-Gal) 

Conc. (PPG) Rate 
(BPM)

Fluid 
Type 

Prop 
Type 

Cum 
Proppant 
(M-lbs) 

Pump Time
(min) Start End 

6.00 6.00 0.0 0.0 
10 

Slickwater - 
0.0 

14.3 

0.32 0.29 3.0 3.0 
10 

Xlinked Gel 40/70 Sand 
0.6 

0.8 

4.04 3.62 3.5 3.5 
10 

Xlinked Gel 20/40 Ceramic 
3.5 

9.6 

9.38 8.31 4.0 4.0 
10 

Xlinked Gel 20/40 Ceramic 
10.6 

22.3 
Total Slurry, M-Gal 19.7 Total Fluid 18.2 
Total Proppant, M-lb 46.8 Avg. Conc 2.6 
Total Pump Time, min 47.0 Pad % 30.4

“M” is a Roman for thousand. 
 

   

 

 

 

 



www.manaraa.com

106 
 

Table 15. Proppant data (Courtesy of NSI Tech., 2012) 

Ceramic 20/40  

Specific Gravity 3.70 

Damage Factor (1.0 = No Damage) 0.85 

Stress, psi 0 2000 4000 8000 16000

KfW @ 2 lb/sq ft (md-ft) 7300 7100 6400 4800 2200 

RC Sand 16/30      

Specific Gravity 2.55 

Damage Factor (1.0 = No Damage) 0.80 

Stress, psi 0 2000 4000 8000 16000 

KfW @ 2 lb/sq ft (md-ft) 11800 10800 8900 5500 1500 

Table 16. Fluid data (Courtesy of NSI Tech., 2012) 

Slickwater 

Specific Gravity: 1.04 

Data @ Wellbore @ FormTmp    1.0 hr    2.0 hr    4.0 hr    8.0 hr 

vis(cp @ 170 1/sec) 188.0 123.0 88.0 67.0 35.0 14.0 

non-Newtonian  n' 0.46 0.53 0.58 0.61 0.64 0.67 

K(lb/sec/ft2)x1000 0.06 0.03 0.02 0.01 0.00 0.00 

30# X-linked gel 
Specific Gravity: 1.04 

Data @ Wellbore @ FormTmp 2.0 hr 3.7 hr 5.2 hr 6.6 hr 

vis(cp @ 170 1/sec) 500.0 400.9 226.0 124.8 83.2 54.1 

non-Newtonian  n' 0.72 0.72 0.72 0.72 0.72 0.72 

K(lb/sec/ft2)x1000 0.04 0.03 0.02 0.01 0.01 0.00 

The downhole friction versus rate for the simulated hydraulic fracture treatment 

(optimal case) is shown in Table 17. 

Table 17. Pipe friction data 

Q (BPM) dP/dL (psi/100ft) 

5 9 

10 18 

20 40 

50 180 

Using fully-3D modeling with the developed pump schedule, the fracture 

dimensions and fracture conductivities were calculated. Then, these parameters were 

evaluated to make sure that the job would not yield a fracture that could grow 
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upwards into the Lodgepole Formation. Table 18 contains the details of the treatment 

design and the results from the fully-3D fracture simulations. Note that in the 3D 

modeling we have used finite element method (FEM) for calculating the fracture 

width and fracture propagation. Generally, for cases where formation layers have 

differing values for modulus, FEM needs to be used for fracture width/propagation 

calculations. FEM should probably be used in any case where modulus values in 

different layers differ by a factor of 2 or more [NSI Tech., 2012].  

Note that the basic theory of fluid loss from a hydraulic fracture has been 

employed based on 1-D fluid loss (also called Carter fluid loss [Gidley, 1990]), which 

is valid for matrix fluid loss as long as the lateral propagation (height and length) is 

rapid compared to the rate of fluid leakoff normal to the fracture. If the hydraulic 

fracture intersects with existing natural fractures, then these natural fissuers may 

begin to open under the high pressure associated with the injected fluid. This can 

dramatically increase the rate of fluid loss. The natural fractures will begin to open 

when the net pressure inside the fracture begins to exceed a critical value (PnetCrit.). As 

the net pressure rises above this critical level, the rate of fluid loss then becomes 

proportional to the product of natural fracture density and (Pnet - PnetCrit.) cubed. The 

critical net pressure can be obtained by analyzing the Nolte-Smith log-log plot of net 

treating pressure versus time [Kim and Wang, 2011]. Since this type of data for the 

study well was not available, the extra fluid loss due to natural fractures was 

considered by increasing the leak-off coefficient to some degree. 

Also, in our calculations we checked the results to make sure that the three major 

constraints considered in the execution of the hydraulic fracture treatments were met. 

They are: a) a limit of 1000 psi was considered for the net-pressure that can influence 

the surface treating pressure (#HHP), and can have an effect on the fracture height 
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growth (unwanted fracture growth into the Lodgepole), b) fracture width limit that 

should be at least 3 times the proppant diameter in order to prevent the proppant 

bridging and involuntary screenout, and c) the injection time that has to be less than 

24 hours. As is clear from the calculations in Table 18, these constraints hold in our 

simulation study.  

Table 18. The results of fully3D/FEM fracture simulation 

Half Length 'Hydraulic' Length (ft) 1091.8 

Propped length (ft) 870.0 

PRESSURE: 

Max Net Pressure (psi) 1213.0 

Final Net Pressure (psi) 755.0 

Surface Pres-End of Pad (psi) 7116.0 

Surface Pres-Start of Flush (psi) 5621.1 

Surface Pres-End of Job (psi) 6656.9 

Maximum Hydraulic horsepower 1779.0 

TIME: Max Exposure to Form. Temp. (min) 45.3 

Time to Close 12.0 

RATE: Fluid Loss Rate during pad (BPM) 0.17 

EFFICIENCY: At end of pumping schedule 0.96 

PROPPANT: 
Average In Situ Conc.(lb/ft^2) 0.2 

Average Conductivity (md-ft) 556.3 

Fcd (KfW/KXf) 213.15 

HEIGHT: Max Fracture Height (ft) 150.2 

WIDTH: Avg width at end of pumping (in) 0.14 

VOLUMES: 
Total Fluid Volume (M-Gal) 18.2 

Total Proppant Volume (M-Lbs) 46.8 

Figure 68 shows the width profile calculated from the fully-3D, FEM simulation. 

It shows that the created fracture is well confined within the Bakken Formation. 
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Figure 68. Width profile from fully-3D, FEM simulation 

As is clear from this figure, the fracture height is nearly equal to the thickness of 

the pay zone. Generally, it is believed that in-situ stress differences (in the vertical 

stress profile) are the major controlling factor of fracture height confinement 

[Warpinski et al., 1994]. The results from the fully-3D fracture simulation, performed 

by finite difference solutions for fracture geometry are shown in Table 19 and Table 

20.  

Table 19. The results from fully-3D fracture simulation—time history 

Time Pen Pres Rate Prop Sl Vol Efficiency Loss Hght W-Avg 
(min) (ft) (psi) (BPM) (PPG) (M-Gal)  (BPM) (ft) (in) 

0.7 30.0 1213 10.00 0.0 0.3 1.00 0.6 60 0.16 
3.1 134.8 426 10.00 0.0 1.3 1.00 0.2 88 0.10 
5.5 213.0 468 10.00 0.0 2.3 1.00 0.3 88 0.10 
7.9 276.5 498 10.00 0.0 3.3 0.99 0.3 90 0.11 

10.3 338.9 515 10.00 0.0 4.3 0.99 0.3 92 0.12 
12.6 394.5 534 10.00 0.0 5.3 0.98 0.3 92 0.12 
14.3 431.9 548 10.00 0.0 6.0 0.98 0.4 92 0.13 
15.0 451.6 553 10.00 3.0 6.3 0.98 0.4 92 0.13 
15.1 452.1 554 10.00 3.5 6.3 0.98 0.4 92 0.13 
17.5 505.4 590 10.00 3.5 7.3 0.98 0.4 95 0.13 
19.9 553.5 612 10.00 3.5 8.4 0.98 0.4 103 0.13 
22.3 603.2 631 10.00 3.5 9.4 0.97 0.4 106 0.13 
24.6 642.2 660 10.00 3.5 10.4 0.97 0.4 112 0.14 
24.7 643.3 660 10.00 4.0 10.4 0.97 0.4 113 0.14 
27.1 684.7 675 10.00 4.0 11.4 0.97 0.5 137 0.14 
29.6 725.6 695 10.00 4.0 12.4 0.97 0.5 137 0.14 
32.0 763.1 707 10.00 4.0 13.5 0.97 0.5 140 0.14 
34.4 800.3 715 10.00 4.0 14.5 0.97 0.5 143 0.14 
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36.8 838.9 727 10.00 4.0 15.5 0.96 0.5 143 0.14 
39.2 872.9 735 10.00 4.0 16.5 0.96 0.5 145 0.14 
41.6 904.2 743 10.00 4.0 17.5 0.96 0.5 148 0.14 
44.1 938.8 748 10.00 4.0 18.5 0.96 0.5 150 0.14 
46.5 969.5 754 10.00 4.0 19.5 0.96 0.6 150 0.14 
47.0 975.5 755 10.00 4.0 19.7 0.96 0.5 150 0.14 
49.4 1006.0 688 0.00 4.0 19.7 0.96 0.5 150 0.14 
52.3 1035.5 661 0.00 4.0 19.7 0.96 0.5 150 0.13 
56.0 1078.2 636 0.00 4.0 19.7 0.95 0.6 150 0.13 
59.0 1091.8 619 0.00 4.0 19.7 0.95 0.5 150 0.13 

Figure 69 illustrates the trend of fracture conductivity versus fracture penetration. 

Once pumping stops and the fluid has leaked-off into the formation, the fracture faces 

close on proppants. Figure 69 shows that upon fracture closure a uniformly packed 

fracture would be created with almost 700 to 750 md-ft conductivity. It also shows 

that the fracture created by hybrid fracture treatment (slickwater plus crosslinked gel) 

would be well conductive and better confined within the Bakken.  

Table 20. The fracture geometry summary— at end of pumping schedule 

Distance Pressure W-Avg Q Sh-Rate Hght (ft) Bank Prop 

(ft) (psi) (in) (BPM) (1/sec) Total Up Down Prop Fraction (PSF) 
15 746 0.21 5.0 13 150 71 72 143 0.00 0.03 
45 732 0.20 4.9 15 150 71 72 143 0.00 0.02 
75 718 0.19 4.7 16 150 71 72 143 0.00 0.02 
105 704 0.19 4.6 17 143 71 65 143 0.00 0.02 
135 691 0.18 4.5 18 143 71 65 136 0.00 0.02 
165 676 0.17 4.3 19 143 71 65 136 0.00 0.02 
195 661 0.16 4.2 20 143 71 65 129 0.00 0.02 
225 646 0.16 4.0 21 137 71 59 122 0.00 0.02 
255 630 0.15 3.8 22 137 71 59 103 0.00 0.02 
285 613 0.14 3.7 24 137 71 59 103 0.00 0.02 
315 596 0.14 3.6 26 131 71 53 103 0.00 0.02 
345 579 0.13 3.4 28 128 68 53 103 0.00 0.01 
375 561 0.13 3.3 34 127 68 53 97 0.00 0.01 
405 544 0.16 3.2 27 106 46 53 91 0.00 0.01 
435 531 0.15 2.7 25 99 46 46 91 0.00 0.01 
465 518 0.16 2.6 27 92 40 46 91 0.00 0.01 
495 505 0.15 2.6 28 92 40 46 91 0.00 0.01 
525 493 0.15 2.5 30 92 40 46 84 0.00 0.01 
555 480 0.14 2.5 31 92 40 46 78 0.00 0.01 
585 468 0.13 2.4 33 92 40 46 78 0.00 0.01 
615 455 0.13 2.3 35 88 40 42 72 0.00 0.00 
645 442 0.13 2.3 37 88 40 42 72 0.00 0.00 
675 429 0.13 2.2 39 82 33 42 65 0.00 0.00
705 415 0.12 2.1 41 82 33 42 59 0.00 0.00 
735 401 0.12 2.0 43 82 33 42 52 0.00 0.00 
765 386 0.11 1.9 45 82 33 42 0 0.00 0.00 
795 370 0.11 1.9 48 82 33 42 0 0.00 0.00 
825 354 0.10 1.8 51 82 33 42 0 0.00 0.00 
855 335 0.09 1.7 55 82 33 42 0 0.00 0.00 
885 315 0.09 1.6 60 79 33 39 0 0.00 0.00 
915 291 0.08 1.4 62 79 33 39 0 0.00 0.00 
945 261 0.06 1.1 79 78 33 39 0 0.00 0.00 
975 189 0.03 0.6 132 78 33 39 0 0.00 0.00
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Figure 69. Fracture conductivity profile at shut-in and at closure 

Figure 70 shows the proppant coverage versus fracture penetration. The final in-

situ proppant concentration is shown in this figure, where it is clear that a relatively 

good poppant distribution (due to uniformity) was obtained from the hybrid fracture 

treatment. 
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Figure 70. Fracture conductivity profile— at shut-in and at closure 

Figure 71 depicts the crack-front positions at successive stages of crack growth. 

Other results from the fully-3D/FEM fracture simulations are shown in Figures 72-93. 
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Figure 71. Propagation of fracture tip 
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Figure 72. Cross section of the created hydraulic fracture – at closure 
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Figure 73. Fluid efficiency obtained from fully-3D simulation 

In fact, the fracture volume is created by that portion of the fracturing fluid that 

does not leak-off into the formation. Hence, the fluid loss coefficient controls the 

created fracture geometry. This fluid loss coefficient determines the fluid efficiency, 

which is defined as: 

volume of fracture created
fluid efficiency

total fracture fluid volume pumped
  (50)

The best estimate of the fluid efficiency when designing a fracturing treatment 

for a specific well would be measuring the fluid efficiency in the laboratory or during 

a mini-frac test [Gidley, 1990]. 
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Figure 74. Summary plot for the optimal fracturing treatment— at closure 
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Figure 75. Summary plot for the optimal fracturing treatment— at closure 
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Figure 76. Average width of the fracture versus fracture penetration— at closure 

The fully-3D/FEM modeling and simulation allow detailed contouring of the 

hydraulic fracture parameters. The parameters for which contour plots were prepared 

include: fluid pressure inside the fracture, cumulative fluid loss, fracture volume, local 

net pressure, net pressure (the difference between pressure in the fracture and closure 
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stress), proppant coverage, temperature, shear rate, and fluid viscosity along the 

fracture, fracture width profile (effective and total), the ratio of fracture width to 

proppant particle diameter, and the distribution of fluid velocity and proppant velocity 

at each point in the fracture, as illustrated in Figures 77 to 93. 
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Figure 77. Absolute value of fluid pressure in the fracture — at closure 
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Figure 78. Cumulative fluid loss in the fracture — at closure 
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Figure 79. Fracture volume as the crack elongates — at closure 
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Figure 80. Local net pressure at each point in the fracture — at closure 
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Figure 81. Net pressure at each point in the fracture — at closure 
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Figure 82. Proppant concentration along the created fracture (effective) — at closure 
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Figure 83. Proppant coverage along the created fracture — at closure 
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Figure 84. Temperature profile along the created fracture — at closure 
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Figure 85. Shear rate profile as the crack propagates — at closure 
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Figure 86. Viscosity of the fracturing fluid along the created fracture — at closure 
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Figure 87. Width profile along the created fracture (effective, propped width) — at closure 
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Note that the effective fracture width is always less than the total width because 

some of the propped fracture width is lost due to embedment, crushing, or gel filter 

cake (compare Figures 88 and 89). 
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Figure 88. Width profile along the created fracture (total width) — at closure 

Proppant mesh size impacts fracture length and width. The proppants can be 

“bridged out” if the fracture width decreases to less than three times the size of the 

diameter of the proppant particles [Gidley, 1990]. As proppants are deposited in a 

fracture, they can resist further fluid flow or the flow of other proppants, inhibiting 

further growth of the fracture. Proppant bridging calculations were made to make sure 

that the condition above (proppant constraint) would hold during the treatment 

(Figure 89). 
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Figure 89. The ratio of fracture width to average proppant particle diameter — at closure 



www.manaraa.com

121 
 

Figures 90 and 91 also illustrate the contour plots of proppant-velocity vector in 

the x-, and y-directions. These figures depict the elements of proppant-velocity as the 

crack-front advances along the “x” and “y” axes. Furthermore, Figures 92 and 93 

depict the fluid-velocity distributions (in both x- and y-directions) as the crack 

propagates. 

 

Figure 90. The contour plot of horizontal velocity of proppant as the crack propagates 
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Figure 91. The contour plot of vertical velocity of proppant as the crack propagates 
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Figure 92. The contour plot of horizontal velocity of fracturing fluid as the crack propagates 
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Figure 93. The contour plot of vertical velocity of fracturing fluid as the crack propagates 
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CHAPTER IV 

UNCERTAINTY ASSESSMENT ASSOCIATED WITH 

PREDICTIONS AND SIMULATIONS 

Numerical simulation models that are used for well stimulation planning are 

usually complex and are prone to error. These models have many factors that 

generally contain uncertainty, which lead to uncertainty in the model outputs. 

Uncertainty assessment can describe such uncertainties in model results. It is critical 

to the future development plans that uncertainty be properly assessed [Cacuci, 2003; 

Marais et al., 2008; Saltelli et al., 2008]. 

In this section we present an approach to the uncertainty assessment of the 

simulation models used for the design optimization of hydraulic fracturing in the 

Bakken Formation. The use of numerical simulation in petroleum engineering, and 

the presence of uncertainty in all aspects of design and modeling, may lead to 

questions such as: What confidence do we have in model results? What are the limits 

in terms of applicability of model results? Uncertainty assessment together with 

sensitivity analysis can provide the answers to such questions.  

There are several methods of representing uncertainty, such as probability 

method, possibility method, Dempster Shafer evidence theory, and interval analysis 

[Zadeh, 1965; Kalos and Whitlock, 1986; Manno, 1999; Ayyub and Klir, 2006; 

Dubois, 2006; Allaire, 2009]. In this research, probabilistic approach with Latin 
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hypercube sampling (i.e. random variables with known distribution functions) was 

used.  

The uncertainty assessment for the Bakken project was conducted using the 

following seven-step procedure:  

1) Describing assessment goals: The goals of the uncertainty assessment for 

the designed fracturing treatments are: a) unveiling modeling errors, b) 

identifying important factors, c) rendering research priorities, and d) 

defending the simulation results in the face of criticism.  

2) Describing assumptions and constraints: In an uncertainty assessment task 

three values for each parameter are required; low, middle, and high. The 

“low” should represent a value near the lower limit of practical values, the 

“high” should represent a value near the upper limit of practical values, and 

the “middle” should be a value in the range between the “low” and the 

“high”.  

3) Describing parameters and outputs: The uncertainty assessment begins 

with the definition of factor distributions— usually reservoir variables. 

Uncertainty assessment uses simulation results to develop response surface 

(RS) for the objective functions, being NPV in this study. Factors and 

outputs used for the uncertainty assessment are shown in Table 21.  

4) Classifying factor uncertainty: The uncertainties in the simulations 

can be classified into two types; a) aleatory, which arises through natural 

randomness, or, b) epistemic, which arises through imperfect knowledge 

[Ang and Tang, 2007; Allaire, 2009]. Note that aleatory uncertainty is 

irreducible (unless changing the sampling method), whereas epistemic 

uncertainty can be reduced either by increasing model fidelity (through 
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more accurate reservoir modeling) or by performing additional 

measurements (i.e. well logs, well tests, etc.). It is more likely that we have 

epistemic uncertainty in our simulations because we have used Latin 

hypercube as the sampling method. In an effort to reduce epistemic 

uncertainty propagation error in the modeling process, new models were 

developed which took into consideration the geomechanical behavior of 

naturally fractured reservoirs (NFRs). The models described the 

relationships between geomechanical parameters and fracture aperture, 

which can be important in stress-sensitive NFRs. Such relationships among 

the key parameters can be used for conducting more accurate reservoir 

characterization to reduce the epistemic uncertainties [Jabbari and Zeng, 

2011; Jabbari et al., 2011a; Jabbari et al., 2011b; Jabbari et al., 2012]. 

5) Conducting uncertainty analysis: Performing the uncertainty assessment 

can lead to answering the key question: “How do uncertainties in the 

simulation model, from parameters, propagate to uncertainties in the 

results?” 

6) Conducting sensitivity analysis: The main purpose of conducting a 

sensitivity analysis is to meet the goals of the uncertainty assessment by 

answering two key questions: a) which parameters contribute to variability 

in model outputs? and b) which factors should be considered for further 

research to reduce variability in model outputs? 

7) Presenting the results: The visual presentation of quantitative information, 

such as the results of sensitivity and uncertainty analyses can be used in 

support of decision- and policy-making, though the results are not in the 

form of an evaluated decision-rule or utility function. 
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That being said, the main goals of our calculations are to establish a probabilistic 

modeling for assessing uncertainties in the simulation results, to develop proxy 

models for approximating the output at un-simulated points, and to demonstrate the 

results from the calculations with probability distribution curves. 

Table 21. Factors examined in the Uncertainty Assessment 

Parameters Probability Distribution Function Uncertainty Type 

PorMtrxMultplier Uniform 

epistemic 

PermMtrxMultplier Normal 

PorFracMultplier Fixed-value 

PermNatFrac Lognormal 

KvKhRatio Normal 

DI_NatFrac Lognormal 

DJ_NatFrac Normal 

DK_NatFrac Triangular 

Rel. Perm. Table – Matrix  

Soirw Uniform 

Krocw Uniform 

Krgcl Uniform 

Krwiro Triangular 

no Normal 

nw Uniform 

Rel. Perm. Table – Nat. Frac.  

Sgconf Uniform 

Sgcrit Lognormal 

Soirgf Normal 

Sorgf Lognormal 

Sorwf Normal 

Swconf Lognormal 

Krgclf Normal 

Krocwf Lognormal 

Krwirof Triangular 

Swtr(i) Normal 

Hyd. Frac. Cond. (kfw), md-ft Fixed-value 

Hyd. Fracture Spacing, ft Fixed-value 

In the simulation models, the input parameters are replaced by appropriate 

probability distributions rather than single values. The parameter whose value cannot 

be set with certainty is called a random variable (Table 21). Accordingly, the output 

value (either Cum_OIL or NPV) will be a probability distribution rather than a single 

value. The steps of the method include: a) using the simulation model via random 

sampling, such as Latin hyper cube, to obtain information, b) using a deterministic 
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model to combine the variables of the model, c) repeating the process several times, 

and d) analyzing the probabilistic outputs in order to make it possible to evaluate 

alternative courses of action [Mian, 2011]. Monte Carlo simulation was used in this 

study to conduct such analyses. 

Monte Carlo simulation 

Monte Carlo method is a broad class of computational algorithms that rely on 

random sampling to obtain numerical results. They are often used in physics and 

mathematical problems and are most suited to be applied when it is impossible to 

obtain a closed-form expression or infeasible to apply a deterministic algorithm. 

Monte Carlo methods are mainly used in three distinct problems: optimization, 

numerical integration and generation of samples from a probability distribution 

[Anderson, 1986; Mian, 2011]. The steps in a Monte Carlo simulation are as follows: 

1) Defining the problem, 

2) Assessing the input parameters through a sensitivity analysis, 

3) Developing the probability distributions for the significant parameters. The 

probability distributions can be of standard forms, such as normal and lognormal, 

or they may be of empirical forms, such as rectangular/uniform and triangular, or 

more complicated shapes. Each of these distributions are explained in more 

details below: 

Uniform Probability Distribution: 

A uniform distribution is defined by two values, a  and b , such that a b . 

A random variable X  with such a distribution is uniformly distributed on the 

interval [ , ]a b  with the following probability distribution function: 
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1
( )

0

for b X a
f X b a

otherwise

   


 (51)

Figure 94 shows the general form of a uniform distribution. 

 
Figure 94. Uniform probability density function (continuous) 

It can also be in the form of a discrete uniform distribution such that all values of 

a finite set of possible values have equal probability (Figure 95). 
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Figure 95. Uniform probability density function (discrete) 

Normal Probability Distribution: 

A normal distribution, or Gaussian distribution, is typically defined by a 

mean,  , and variance, 2 . A random variable X  with such a distribution is 

normally distributed on the interval ( , )   with the following probability 

distribution function: 

2
2 1 1

( , ) exp
22

X
f X

 
 

     
   

 (52)

Figure 96 shows the general form of a normal distribution. 
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Figure 96. Normal probability density function (courtesy of Wikipedia) 

Lognormal Probability Distribution: 

Another useful distribution, based on the normal distribution, is the 

lognormal distribution. This type of distribution is widely used in environmental 

engineering and economics to represent the distribution of returns on 

investments, insurance claims, and many oil and gas related problems. Core 

permeability and formation thickness may be represented by the lognormal 

distributions [Mian, 2011]. In probability theory, a log-normal distribution is a 

continuous probability distribution of a random variable whose logarithm is 

normally distributed. If X  is a random variable with a normal distribution, then 

exp( )Y X  has a log-normal distribution; likewise, if Y  is log-normally 

distributed, then ln( )X Y  has a normal distribution. A random variable which 

is log-normally distributed takes only positive real values. The lognormal 

probability distribution is given by: 
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 
2

2 1 1 ln
, exp

22

X
f X

X

 
 

     
   

 (53)

The general form of a lognormal distribution is shown in Figure 97. 

 

Figure 97. Lognormal probability density function (courtesy of Wikipedia) 

Beta Probability Distribution:  

A beta distribution is defined for the interval [0,1]  with two parameters,   

and  , that define the shape of the distribution. The probability distribution 

function is given by: 

1 1( )
(1 ) 0 1

( ) ( )( , )

0

X X for X
f X

otherwise

  
  

       


 (54)
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Where ( )x  is the gamma function, which is defined as: 

1

0

( ) xx x e dx


     (55)

The general form of a beta distribution for some values of ,   is shown in 

Figure 98. 

 

Figure 98. Beta probability density function (courtesy of Wikipedia) 

The beta distribution is a useful distribution in the sense that its shape 

parameters give it a lot of flexibility and it is defined on a finite interval rather 

than on ( , )  . However, as can be seen from the definition of its probability 

density function, a beta distribution is complex in that the parameters of the 

distribution do not have obvious interpretations. For this reason, it is common in 

modeling for decision- and policy-making to use a triangular distribution as a 

proxy for a beta distribution [Williams, 1992; Johnson, 1997; Allaire, 2009].  
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Triangular Probability Distribution: 

In probability theory and statistics, the triangular distribution is a continuous 

probability distribution with lower limit a , upper limit b  and mode c , where 

a b  and a c b  . The probability density function is given by: 

2( )

( )( )

( , , ) 2( )

( )( )

0

X a
for a X

b a c a

f X a b c b X
for c X

b a b c

otherwise

         



(56)

The triangular distribution is a more understandable means for quantifying 

uncertainty than a beta distribution in the sense that the role of the parameters in 

this family of distributions is transparent. The general form of a triangular 

distribution is shown in Figure 99. 

 

Figure 99. Triangular probability density function 

The mean and standard deviation of a triangular distribution are calculated 

using the following equations [Mian, 2011]: 
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3
low middle highX X X

X
 

  (57)

2( )( ) ( )

18( )
high low high high low middle high high middle lo

high low

X X X X X X X X X X
s

X X

    



(58)

The assessment of the probability functions can be based on fitting one of 

the above theoretical distributions to available data from the history matching 

and sensitivity analysis, or it can be based on analyst experience. In Figs.100 to 

111 the histograms resulting from the history matching and randomly sampling 

from original distributions are shown. In the absence of specific knowledge about 

the form of probability distributions, however, it seems reasonable in most cases 

to assume normal or lognormal distribution, especially when dealing with various 

geological distributions [Mian, 2011]. Generally, permeability distributions of 

reservoirs fit lognormal curves, unlike porosity, which most frequently falls into 

the category of normal distributions [Tiab, 2012]. 

 

Figure 100. Fitting a probability distribution function to PorMtrxMultplier by history 
matching—Uniform Distribution Function fits the data. 
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Figure 101. Fitting a probability distribution function to PermMtrxMultplier by history 

matching—Normal Distribution Function fits the data. 

 

Figure 102. Fitting a probability distribution function to PorFracMultplier by history 

matching—Fixed-value Distribution Function fits the data. 
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Figure 103. Fitting a probability distribution function to PermNatFrac by history matching—

Lognormal Distribution Function fits the data. 

 

Figure 104. Fitting a probability distribution function to KvKhRatio by history matching— 

Normal Distribution Function fits the data. 
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Figure 105. Fitting a probability distribution function to DI_NatFrac by history matching— 

Lognormal Distribution Function fits the data. 

 

Figure 106. Fitting a probability distribution function to DJ_NatFrac by history matching— 

Normal Distribution Function fits the data. 
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Figure 107. Fitting a probability distribution function to DK_NatFrac by history matching— 

Triangular Distribution Function fits the data. 
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Figure 108. Fitting probability distribution functions to Rel.Perm.Table_Matrix by history 

matching 
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Figure 109. Fitting probability distribution function to Rel.Perm.Table_NatFrac by history 

matching 



www.manaraa.com

144 
 

 

Figure 110. Fitting a probability distribution function to Swtr by history matching— Normal 

Distribution Function fits the data. 

 

Figure 111. Fitting a probability distribution function to HFCase by history matching—

Fixed-value Distribution Function fits the data. 

4) Performing the calculations. The Monte Carlo simulation involves repeated 

random sampling from the input distributions and subsequent calculation of a set 

of sample values for the output distributions. This process is repeated over 
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several iterations. In this study, the Monte Carlo simulation was repeated 65,000 

times, each time taking a new set of input parameters. In Monte Carlo sampling 

each random variable remains as an element of the distribution, thus leaving the 

entire statistical range available for sampling in subsequent iterations. Hence, this 

would result in clustering of sampling in some parts of the distribution while 

other parts are not sampled [Mian, 2011]. For avoiding such a problem in our 

sampling, we have used Latin hypercube sampling (LHS) in which the 

cumulative distribution function is first partitioned into non-overlapping intervals 

of equal probability. LHS is a better sampling method because it guarantees that 

all probabilities are present in the calculations, thus giving equal weight to all 

probabilities on the CDF (cumulative distribution function) (Figure 112). Using 

LHS greatly reduces the number of required iterations in a simulation case with a 

large number of input parameters. 

 

Figure 112. Latin hypercube sampling  
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RSM for NPV Calculations using Monte Carlo Simulation 

The final step of the uncertainty assessment was utilizing the concept of response 

surface method (RSM) to develop proxy models being used to perform thousands of 

Monte Carlo simulations. The goal at this stage was to describe in detail the 

relationship between the uncertain factors and the response, i.e. the NPV. A full 

quadratic model was used to both predict the whole sample space and identify the 

optimal cases. The general quadratic model for k  independent variables is given by: 

1
2

0
1 1 1 1

k k k k

i i ii i ij i j
i i i j i

Y b b X b X b X X


    

      


 
(59)

Where 'b s  are the coefficients to be obtained by regression analysis. Note that in the 

model used to fit the data (Eq.59), the higher order interaction terms (higher than 2) 

were neglected, as are usually ignored in the experimental design [Lawson and 

Erjavec, 2001]. Hence, the experimental design method used in this research (LHS) 

helped us to estimate all main effects, squared terms, and two-factor interaction terms.  

Comparing the actual data (from simulations) versus the predicted values (from 

Eq.59), we can identify the outliers (if any) and check the validity of the response 

surface model (Figures 113, 114, and 116). In these figures, the blue dots are training 

jobs for creating the response surface model, and the red dots are the verification jobs 

used to check if the response surface model is a good proxy to the actual simulation 

results. 
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Figure 113. The verification plot (actual vs. prediction)— linear model 

 

Figure 114. The verification plot (actual vs. prediction)— quadratic model 
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Figure 115. Tornado plot of NPV function (reduced quadratic model) 

The tornado plot in Figure 115 displays the terms which have the greatest effect 

on the objective function (NPV). The statistical significance of each term (linear, 

squared, or interaction) is characterized by its corresponding prob t  value shown 

in Table 22. If such probability values of some terms were larger than / 2  (for a 2-

tailed t-test) or larger than   (for a 1-tailed t-test), the corresponding terms would not 

be significant and they can be ignored in the proxy model regressions. Finally, only 

the significant terms were used to develop the response surface proxy model as shown 

in Figure 115. 
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Figure 116. The verification plot (actual vs. prediction)— reduced quadratic model 

The plots shown above depict how closely the response surface predictions match 

the actual values from the simulations. The 45 degree line represents a perfect match 

between the equation and actual simulation results. The closer the points are to the 45 

degree line, the more precise the developed response surface model. The points that 

are far away from the 45 degree are considered as outliers. In the case of too many 

outliers, we need to figure out the cause of the outliers before using the response 

surface model. The lower and upper 95% confidence curves are also drawn to show 

whether the model is statistically significant [Sall, 1990]. It is clear from Figure 116 

that the reduced quadratic model is the most accurate proxy model (among the three) 
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for the actual simulation runs. The details of the equation-fit to the training data are 

shown in Table 22. 

Table 22. Effect screening using normalized parameters (-1, +1) 

Term Coefficient
Standard 

Error 
t Ratio Prob > |t| VIF 

Intercept 89.9867 0.263308 341.755 <0.00001 0.00 
DI_Nfrac(248.32, 1109.2) 1.4179 0.155713 9.10585 <0.00001 1.14 
DJ_Nfrac(406.01, 993.99) 0.782536 0.153349 5.10297 <0.00001 1.06 
DK_Nfrac(48.723, 206.77) 6.24367 0.148405 42.0718 <0.00001 1.07 

PERMtrxMULTPLR(3.04, 6.96) -2.07736 0.159156 -13.0523 <0.00001 1.08 
PorFracMULTPLR(6.7678, 26.464) 5.17362 0.149569 34.5903 <0.00001 1.06 
REFINE_VAR("REFINE_01.inc", 

"REFINE_05.inc") 
-1.91103 0.142954 -13.3682 <0.00001 1.07 

Swtr(0.3504, 0.3896) 29.4367 0.155226 189.637 <0.00001 1.05 
DI_Nfrac*DI_Nfrac -0.837544 0.236909 -3.53529 0.00046 1.06 

DI_Nfrac*PorFracMULTPLR -0.731168 0.214904 -3.4023 0.00075 1.09 
DJ_Nfrac*PorFracMULTPLR -0.463064 0.213436 -2.16957 0.03073 1.05 

DK_Nfrac*DK_Nfrac -3.73748 0.245685 -15.2125 <0.00001 1.09 
DK_Nfrac*PERMtrxMULTPLR 0.602929 0.231808 2.60098 0.00970 1.09 
DK_Nfrac*PorFracMULTPLR -3.85676 0.21612 -17.8455 <0.00001 1.11 

DK_Nfrac*Swtr 0.38776 0.215175 1.80207 0.01242 1.10 
PERMtrxMULTPLR*PERMtrxMULTPLR 0.442924 0.226709 1.95371 0.02156 1.04 
PERMtrxMULTPLR*PorFracMULTPLR 1.00943 0.229048 4.40708 0.00001 1.06 
PorFracMULTPLR*PorFracMULTPLR -4.59523 0.244679 -18.7806 <0.00001 1.08 

PorFracMULTPLR*REFINE_VAR -0.807905 0.207906 -3.88592 0.00012 1.06 
PorFracMULTPLR*Swtr 0.418312 0.229934 1.81927 0.01975 1.07 

REFINE_VAR*Swtr -0.967904 0.212161 -4.56213 <0.00001 1.05 
Swtr*Swtr 3.92957 0.230463 17.0508 <0.00001 1.08 

The parameters shown in the table are described as follows:  

a) “t-Ratio” is a statistic that tests whether the true parameter (coefficient) is 

zero. It is also called the signal-to-noise t-ratio which is a tool to judge the 

significance of each effect and interaction by comparing its t-ratio to the 

critical t-value (or standard error) and has a Student’s T-distribution under 

the hypothesis, given the normal assumptions about the model [CMG, 

2012].  

b) “ prob t ” is the probability of getting a great t-statistic (in absolute 

value), given the hypothesis that the parameter (coefficient) is zero. If such 

probability values of some terms were larger than / 2  (for a 2-tailed t-
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test) or larger than   (for a 1-tailed t-test), the corresponding terms would 

not be significant and they can be ignored in the proxy model regressions.  

c) “VIF” or variance inflation factor quantifies the severity of 

multicollinearity in an ordinary least-square regression analysis. It provides 

an index that measures how much the variance (the square of standard 

deviation) of an estimated regression coefficient is increased because of 

collinearity. Multicollinearity is a statistical phenomenon in which two or 

more predictor variables in a multiple regression model are highly 

correlated, meaning that one can be linearly predicted from the others with 

a non-trivial degree of accuracy. In this situation the coefficient estimates 

may change erratically in response to small changes in the model or the 

data. Multicollinearity does not reduce the predictive power or reliability of 

the model as a whole, at least within the sample data themselves; it only 

affects calculations regarding individual predictors. That is, a multiple 

regression model with correlated predictors can indicate how well the entire 

bundle of predictors predicts the outcome variable, but it may not give valid 

results about any individual predictor, or about which predictors are 

redundant with respect to others. A high degree of multicollinearity can 

also prevent computer software packages from performing the matrix 

inversion required for computing the regression coefficients, or it may 

make the results of that inversion inaccurate. For analyzing the magnitude 

of multicollinearity, we should consider the size of each VIF(i). A common 

rule of thumb is that if VIF(i) > 5, then multicollinearity is high [Lipovestky 

and Conklin, 2001; Van den Poel et al., 2004]. 
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Note that in statements of the assumptions underlying regression analysis, 

such as ordinary least-square method, the phrase "no multicollinearity" is 

sometimes used to mean the absence of perfect multicollinearity, which is 

an exact (non-stochastic) linear relation among the regressors. The final 

equation of NPV for the investigated hydraulic fracturing treatment was 

then obtained as follows: 
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with the coefficients shown in Table 23. 

Table 23. Coefficients in terms of actual parameters 

Term Coefficient 

Intercept 824.017 
DI_Nfrac 0.0122967 
DJ_Nfrac 0.00531932 
DK_Nfrac 0.202175 

PERMtrxMULTPLR -3.57907 
PorFracMULTPLR 2.30887 

REFINE_VAR 0.0886187 
Swtr -5888.66 

DI_Nfrac*DI_Nfrac -4.52E-06 
DI_Nfrac*PorFracMULTPLR -0.000172485 
DJ_Nfrac*PorFracMULTPLR -0.00015994 

DK_Nfrac*DK_Nfrac -0.000598503 
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DK_Nfrac*PERMtrxMULTPLR 0.00389273 
DK_Nfrac*PorFracMULTPLR -0.00495581

DK_Nfrac*Swtr 0.250352 
PERMtrxMULTPLR*PERMtrxMULTPLR 0.115297 
PERMtrxMULTPLR*PorFracMULTPLR 0.0522959
PorFracMULTPLR*PorFracMULTPLR -0.0473808 

PorFracMULTPLR*REFINE_VAR -0.000410183 
PorFracMULTPLR*Swtr 2.16716

REFINE_VAR*Swtr -0.246914 
Swtr*Swtr 10229 

Once the least-square model has been fit to the data, generally the first question 

of interest would be: “How well does the equation fit?”  

The minimized sum of squared errors is a direct measure of how well the model fits 

the data: 

 
2

1

k

i i
i

SSE Y Y


 


 
(61)

This measure has to be normalized to the total variability in the data ( SST ) for being 

used to compare the model for different situations.  

 
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i

SST Y Y


   
(62)

The ratio of SSE  to SST  represents the fraction of the total variability in the data that 

is not explained by the model [Lawson and Erjavec, 2001]. 

The summary of the model statistics (fit table) quantifies the quality of the 

regressions which indeed shows the details of the developed response surface model 

(Table 24). 

Table 24. The summary of fit  

R-Square 0.986108 

R-Square Adjusted 0.985078 
R-Square Prediction 0.983747 
Mean of Response 86.9627 

Standard Error 2.15332 

In this table the following numeric parameters are summarized: 
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R-Squared: In statistics, we normally use the complementary statistic ( 2R ), 

which describes the fraction of the total variability in the data that is explained by the 

model: 

2 1
SSE

R
SST

   
(63)

R-Squared adjusted: Adjusted 2R  is used to compensate for the addition of 

variables to the model. As more independent variables are added to the regression 

model, unadjusted 2R  will generally increase but there will never be a decrease.  This 

will occur even when the additional variables do little to help explain the dependent 

variable. To compensate for this, adjusted 2R  is corrected for the number of 

independent variables in the model. The result is an adjusted 2R  that can go up or 

down depending on whether the addition of another variable adds or does not add to 

the explanatory power of the model. Adjusted 2R  will always be lower than 

unadjusted [Lothar, 1984]. 

 2 21
1 1adjusted

n
R R

n p

 
    

 
(64)

Where n  is the number of observations (training simulation jobs) and p  is the 

number of terms in the response model, including the intercept. 

R-Squared prediction: Predicted R-squared is used in regression analysis to 

indicate how well the model predicts responses for new observations, whereas R-

squared indicates how well the model fits the simulation data. Predicted R-squared 

can prevent overfitting the model and can be more useful than adjusted R-squared for 

comparing models because it is calculated using the observations not included in 

model estimation. Overfitting refers to models that appear to explain the relationship 
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between the predictor and response variables for the data set used for model 

calculation but fail to provide valid predictions for new observations. 

 2

2 11

n

i i
i

prediction

y y
R

SST



 

 

 (65)

Where iy  is an observation point in the sample space, iy


 is the predicted value using 

the developed response surface, and SST  is the total sum of squares. This parameter 

( 2
predictionR ) gives some identification of the predictive capability of the regression 

model. For example, if 2
predictionR  was 0.97 for a regression model, we would expect 

that the response surface model may explain almost 97% of the variability in 

predicting new observations. 

Mean of Response: In regression “mean of response” is the value of the 

dependent variable calculated from the regression parameters and a given set of the 

values of independent variables. It is important as a base model for prediction because 

all other models are compared to it. 

Standard Error: The standard error is the standard deviation of an effect or 

interaction, or, it is the sampling distribution of a statistic [Lawson and Erjavec, 2001; 

Everitt, 2003]. It is the square root of variance and is denoted by Es . 

ANOVA— Analysis of Variance 

In general, the purpose of analysis of variance (ANOVA) is to test for significant 

differences between means. In its simplest form, ANOVA provides a statistical test of 

whether or not the means of several groups are all equal, and therefore generalizes t-

test to more than two groups. The calculations of ANOVA can be characterized as 
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computing a number of means and variances, dividing two variances and comparing 

the ratio to a handbook value to determine statistical significance. Calculating a 

treatment effect is then trivial, "the effect of any treatment is estimated by taking the 

difference between the mean of the observations which receive the treatment and the 

general mean [Cochran and Cox, 1992]. The ANOVA table obtained from the 

response surface fit is outlined in Table 25.  

Table 25. ANOVA (Analysis of Variance) 

Source 
Degrees of 
Freedom 

Sum of 
Squares 

Mean Square F Ratio Prob > F 

Model 31 137582 4438.13 957.161 <0.00001 

Error 418 1938.17 4.63677   

Total 449 139520    

In this output, the test statistic, F, is obtained as 957.161. The p-value for this 

statistic is 0.00001prob  . This means that there is evidence that there are 

differences in the means across groups. In the ANOVA table the following numeric 

parameters are summarized: 

Degree of Freedom: This is the number of values in the final calculation of a 

statistic that are free to vary. 

Sum of Squares: It accounts for the variability measured in the response. It is the 

sum of squares of the differences between the fitted response and the actual response. 

Mean Square: It is the sum of squares divided by its associated degrees of 

freedom. This computation converts the sum of squares to an average (mean square). 

The Error mean square estimates the variance of the error term. 

F Ratio: This ratio is the mean square of the model divided by error mean-

square. This parameter tests the hypothesis if all the regression parameters (except the 

intercept) are zero. Under this whole-model hypothesis, the two mean squares have 
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the same expectation. If the random errors are normal, then under this hypothesis the 

values reported in the Sum of Squares column are two independent Chi-squares. The 

ratio of these two Chi-squares divided by their respective degrees of freedom 

(reported in the Degrees of Freedom column) has an F-distribution. If there is a 

significant effect in the model, the F-Ratio is higher than the one expected by chance 

alone [Cochran and Cox. 1992; Cox, 2006]. 

Prob > F: This is the probability of obtaining a greater F-value (by chance alone) 

if the specified model fits not better than the overall response mean. Significance 

probabilities of 0.05 or less are often considered evidence that there is at least one 

significant regression factor in the model. This significance is also shown graphically 

by the “Actual vs. Predicted” plot described in the “Response Model Verification” 

section. 

5) Analyzing the output. The information obtained from simulation runs can be 

critically analyzed in light of the output distributions achieved. Two types of 

Monte Carlo distributions were made: Unconditional and Conditional 

Distributions. An unconditional distribution graph depicts the distribution of the 

values of objective functions (e.g. NPV or Cum_OIL) with all the uncertain 

parameters sampled from the input probability density functions (Figure 117).  
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Figure 117. Monte Carlo results—unconditional distributions (PDF plot) 

The histograms shown in Figure 117 illustrate the shape of the objective function 

distribution, which is NPV (net present value) in this case. Figure 117 also shows that 

the NPV varies between $44.8 million and $145.78 million with a standard deviation 

being $18.38 million. The values of 10P  (likelihood of real NPV being less than 

$68.311 million), 50P  (likelihood of real NPV being less than or greater than $86.889 

million), and 90P  (likelihood of real NPV being less than $108.41 million) are also 

shown on the PDF and CDF plots, presented in Figures 117 and 118. 
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Figure 118. Monte Carlo results—unconditional distributions (CDF plot) 

On the other hand, a conditional distribution shows different distributions for the 

objective function given that a certain parameter is held constant. In other words, a 

conditional probability distribution is a probability with some conditions imposed. 

The conditional probability distributions of the NPVs for all the uncertain parameters 

are shown in Figures 119 to 134.  
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Figure 119. Monte Carlo results for DI_Nfrac—conditional distributions (PDF plot)  

 

Figure 120. Monte Carlo results for DI_Nfrac —conditional distributions (CDF plot) 
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Figure 121. Monte Carlo results for DJ_Nfrac—conditional distributions (PDF plot)  

 

 

Figure 122. Monte Carlo results for DJ_Nfrac —conditional distributions (CDF plot) 
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Figure 123. Monte Carlo results for DK_Nfrac—conditional distributions (PDF plot)  

 

Figure 124. Monte Carlo results for DK_Nfrac —conditional distributions (CDF plot) 
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Figure 125. Monte Carlo results for PERM_Nfrac—conditional distributions (PDF plot)  

 

Figure 126. Monte Carlo results for PERM_Nfrac —conditional distributions (CDF plot) 
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Figure 127. Monte Carlo results for PERMtrxMULTPLR—conditional distributions (PDF 

plot)  

 

Figure 128. Monte Carlo results for PERMtrxMULTPLR —conditional distributions (CDF 

plot) 
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Figure 129. Monte Carlo results for PorFracMULTPLR—conditional distributions (PDF plot)  

 

Figure 130. Monte Carlo results for PorFracMULTPLR —conditional distributions (CDF 

plot) 
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Figure 131. Monte Carlo results for REFINE_VAR—conditional distributions (PDF plot)  

 

Figure 132. Monte Carlo results for REFINE_VAR —conditional distributions (CDF plot) 
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Figure 133. Monte Carlo results for Swtr—conditional distributions (PDF plot)  

 

Figure 134. Monte Carlo results for Swtr —conditional distributions (CDF plot) 
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6) Analyzing the simulated alternatives. In most decision- and policy-making 

processes the main goal is to make choices between alternatives. Therefore, all 

the alternatives under consideration should be simulated consistently to generate 

individual distributions and statistical information [Allaire, 2009; Mian, 2011]. 

The results from the alternatives are displayed in Figures 119 to 134. The cross 

plots in Figures 135-142 also show the results of the post-process analysis for the 

uncertainty assessment task. These figures display the relationships between 

NPV and the uncertain parameters. 

 

Figure 135. Cross plot of NPV versus fracturing treatment scenarios 
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Figure 136. Cross plot of NPV versus DI_Nfrac 

 

Figure 137. Cross plot of NPV versus DJ_Nfrac 
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Figure 138. Cross plot of NPV versus DK_Nfrac 

 

Figure 139. Cross plot of NPV versus PERM_Nfrac 
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Figure 140. Cross plot of NPV versus PERMtrxMULTPLR 

 

Figure 141. Cross plot of NPV versus PorFracMULTPLR 
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Figure 142. Cross plot of NPV versus Swtr 

Uncertainty of Oil Price in the NPV Calculations—Engineering vs. Politics 

In the optimization and uncertainty tasks, discussed above, the price of oil was 

considered to be constant within the 5-year time period over which the NPV 

calculations were made. However, due to the economic and political uncertainties in 

the world these days, the decision rules based on the calculated NPVs with a constant 

oil price would be subject to error. Hence, we may need to conduct our monetary 

calculations (NPV) based on variable oil prices.  

The price of oil is volatile and extremely difficult to predict, which is affected by 

many factors. For example, assuming an oil shock in the market in 2014, the price of 

oil would soar in the years ahead. For making the NPV calculations under such a 

virtual condition, we have considered six scenarios for the price of oil to conduct 

more realistic NPV calculations (Figure 143). The likelihood of each scenario (event 

“ B ”) in case of an oil shock, which leads to a volatile oil prices, would be as those 

shown in Table 26 [Financial Times, 2012]. 
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Figure 143. Average annual world oil prices in six scenarios— WTI§ crude oil 

For conducting the NPV calculations on an annual basis, we have defined the 

prices by step-functions as shown in Figure 144.  

 

Figure 144. Average annual world oil prices in six scenarios— prices are in WTI (in step-

function form) 

                                                 
§ West Texas Intermediate 
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Table 26. The probability of occurrence of the oil price events (event B) [Financial Times, 

2012] 

Scenarios P(B) 

BaseCase - 
Scenario_01 50% 

Scenario_02 40% 

Scenario_03 30% 

Scenario_04 60% 

Scenario_05 30% 

Scenario_06 5% 

Due to the uncertainties from random or chance caused by such variability, we 

can never expect to be right 100% of the time. However, we can formulate the 

objective rules that will minimize the chance of error if we base our calculations on 

the understanding of probability theory. This will let us calculate the chances of being 

wrong when we make decisions.  

The probability-based NPV calculations were constructed in the following way. 

We hypothesize different situations to be the usual, expected, or likely to occur. 

Proper cash flow models were constructed with consideration of each oil-price 

scenario, and their corresponding net present values (NPV) were obtained, 

accordingly. Two types of probabilities were developed using Monte Carlo 

simulations: conditional probability curves and joint probability curves.  

In the conditional probability type, the likelihoods of the calculated NPVs for 

each trend of oil-price were determined. In the joint probability type, the probability 

of the situation under which the specified price trend would be likely was also 

considered (Eq.66). Given two events A  and B  with ( ) 0P B  , the joint probability 

of A  and B  is defined as the product of the conditional probability of A  given B  

and the probability of B : 
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( ) ( ) . ( )P A B P A B P B  (66)

Given two jointly distributed random variables A  and B , the conditional 

probability distribution of A  given B  is the probability distribution of A  when B  is 

known to be a particular value. If the conditional distribution of A  given B  is a 

continuous distribution, then its probability density function is known as the 

conditional density function (Figures 100-111). The distribution of the NPVs of 

different oil-price scenarios, with all the uncertain parameters (well, reservoir, etc.), 

sampled from the input probability density functions were calculated as shown in 

Figure 145.  

 

Figure 145. Conditional probability curves for six oil-price scenarios  

The joint probability distribution curves for the six oil-price scenarios are also 

depicted in Figure 146. This figure describes how the revenues earned from a 

hydraulic fracturing treatment in the Bakken Formation could depend upon the 

potential oil-price scenarios in the market. 
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Figure 146. Joint probability curves for six oil-price scenarios  

Anticipated value for a given investment 

In statistics and probability analysis, expected value is calculated by multiplying 

each of the possible outcomes by the likelihood that each outcome will occur, and 

summing all of those values. By calculating expected values, investors can choose the 

scenario that is most likely to give them their desired outcome. In probability theory, 

the expected value (or expectation, mathematical expectation, EV, mean, or the first 

moment) of a random variable is the weighted average of all possible values that this 

random variable can take on. The weights used in computing this average correspond 

to the probabilities in case of a discrete random variable, or densities in case of a 

continuous random variable. From a rigorous theoretical standpoint, the expected 

value is the integral of the random variable with respect to its probability measure 

[Hamming, 1991; Ross, 2007]. 
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If x  is a discrete random variable taking values 1 2 3, , ,...x x x  with probabilities 

1 2 3, , ,...p p p , respectively. Then, the expected value of this random variable is the 

finite sum [Hamming, 1991]: 

 
1

i i
i

E x x p




  
(67)

If the probability distribution of the random variable ( x ) admits a probability 

density function ( )f x , then the expected value can be computed by: 

  ( )E x x f x dx




   
(68)

The scenario analysis performed on the price of oil in this research is one 

technique for calculating the expected value of an investment opportunity for a well 

stimulation plan in the Bakken Formation. It uses estimated probabilities with 

multivariate models (from Monte Carlo simulation), to examine possible outcomes for 

a proposed investment. Scenario analysis also may help investors determine whether 

they are taking on an appropriate level of risk, given the likely outcome of the 

investment. Figure 147 presents the expected value of each oil-price scenario 

considered in the simulations, based on the conditional probabilities displayed in 

Figure 145. 
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Figure 147. Expected values of NPV for six oil-price scenarios 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The objectives of this research were fourfold: a) to make a reliable reservoir 

model for the Bakken Formation through a comprehensive study including sensitivity 

analysis and history matching, b) to come up with best fracturing materials and 

develop preliminary pump schedules based on the selected design parameters, such as 

fracture half-length, pump rate, and maximum proppant concentration (obtained from 

optimization), c) to perform fully-3D hydraulic fracture simulation for modeling the 

created fracture geometry and for pump schedule refinement to place the right amount 

of proppant in the right place along the fracture, and d) to conduct an uncertainty 

assessment of the complex numerical simulations, which was intended to support 

decision- and policy-making processes in well stimulation planning.  

A summary of the work performed to meet each of the objectives is given below. 

It is followed by general conclusions from this research as well as a discussion of 

future research scopes. 

Summary of the research  

The first part of this research was devoted to developing a reliable reservoir 

model for the Bakken Formation. As a next step of fracturing design, the main 

parameters controlling the fracture stimulation in Bakken horizontal wells were 
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evaluated. The main goal was to investigate opportunities to optimize hydraulic 

fracturing and production of horizontal Williston Basin Bakken Formation wells. To 

design a successful hydraulic fracture treatment, four main tasks were carried out. 

First, a reservoir simulation to evaluate the response of the reservoir to fracture 

stimulation and to calibrate the reservoir model was performed through two steps 

involving: a) sensitivity analysis (SA) to determine the significant well/reservoir 

properties and parameters and b) history matching (HM) the simulation results to the 

production data from a stimulated horizontal well in the study area. Note that the 

history matching and reservoir calibration was conducted based on the data from only 

one well. This was because the microseismic data (used for the estimation of SRV) 

was available for only one well in the study area over the Bakken Formation. Second, 

the amount of fracturing materials was estimated and preliminary pump schedules 

were developed based on selected design parameters including: fracture half-length, 

pump rate, and maximum proppant concentration.  

Then, design parameters screening was conducted using 2D fracture geometry 

solutions for fracture treatment parameters. An optimization task was then performed 

to identify optimal stimulation treatment(s) that together with optimal operating 

conditions would return a maximum value for the objective function (i.e. Net Present 

Value).  

Next, fully-3D/FEM fracture modeling was utilized to perform implicit, coupled, 

finite difference/finite element solutions to basic conservation equations. The pump 

schedule— obtained from the scoping design— was changed in terms of the pad 

volume and proppant schedule for treatment optimization. The overall goal of such a 

schedule refinement was to place the right amount of proppant in the right place along 

the fracture.  
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Finally, a comprehensive approach to the uncertainty assessment of the complex 

numerical simulations was performed that is applicable to support decision- and 

policy-making processes in a well stimulation planning. The approach was comprised 

of several steps to establish the assessment goals. A surrogate modeling technique 

together with Monte Carlo simulation was utilized for the uncertainty assessment of a 

hydraulic fracturing treatment plan, obtained from the optimization task. Factor 

uncertainties were presented probabilistically, which were characterized by the 

principle of probability theory, and propagated via Monte Carlo simulation 

methodology. 

In this research, a new approach to hydraulic fracturing design for Bakken 

horizontal wells was demonstrated. The comprehensive study showed that use of 

combined deterministic and probabilistic modeling is applicable to well stimulation 

planning aimed at decision-making processes. 

Conclusions 

As mentioned at the outset, hydraulic fracturing and horizontal drilling are 

needed to exploit a low-permeability shale formation as the Bakken. The use of 

numerical simulation led to answer such questions as: What type of fracturing fluid 

we should use? What type of proppant we should choose? How can we decide upon 

the amount of pad, fracturing fluid, proppants, and injection rate, and how can we 

come up with an optimal pump schedule? 

In this research by integrating reservoir and hydraulic fracture simulations, we 

have concluded that a proper use of hybrid fracture treatments in the Bakken 

Formation would return optimal well stimulation results. The conductivity and 
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fracture height growth contour plots, obtained from fully 3D/FEM fracture simulation, 

showed that a fracturing treatment with injecting slickwater as the pad followed by 

crosslinked gel together with either ceramic or resin-coated sand would guarantee that 

most proppants would stay within the Bakken layers. The results from this study 

would also suggest that in a Bakken well with 10,000-ft lateral length, a fracturing 

strategy that leads to a high fracture half-length (e.g. 1000 ft) and with high number of 

fractures (36 or more) would return an efficient balance between the operating 

charges, fracture treatment costs, drilling expenses, and the benefits earned from the 

incremental oil production. 

On the basis of the numerical simulations conducted in this research, the following 

conclusions can also be drawn: 

 Fully-3D hydraulic fracture simulation can help us to come up with an optimal 

pump schedule that would not yield height growth into an unwanted zone, being 

the LodgePole in this case.  

 We have used a robust workflow to evaluate all the plausible combinations of 

fracturing materials (i.e. fluids and proppants) and well/fracture parameters (i.e. 

lateral length, SRV, fracture spacing, and fracture half-length), to find the best 

candidates for well stimulation plans. 

 We have used a comprehensive approach to uncertainty assessment using 

sampling-based probabilistic methods for an optimal hydraulic fracture 

treatment where such uncertainty assessment analysis could be computationally 

tedious. For this reason, surrogate models were used in the uncertainty 

assessment. We have also used the concept of response surface method (RSM) 

to develop such proxy models being used to perform thousands of Monte Carlo 
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simulations. The goal at this stage was to describe, in detail, the relationship 

between the uncertain factors and the response (NPV). A full quadratic model 

was used to both predict the whole sample space and identify the optimal cases. 

Two types of probability distributions were then developed for the calculated 

NPVs from the Monte Carlo simulations: Unconditional and Conditional 

Distributions. An unconditional distribution graph depicts the distribution of the 

values of NPVs with all the uncertain parameters sampled from the input 

probability density functions, and a conditional distribution shows different 

distributions for the objective function (i.e. Cum_OIL or NPV) given that a 

certain parameter is held constant. 

 NPV calculations can be influenced by the volatility of the oil market. More 

realistic estimates were made through the use of the probability theory by 

considering different scenarios for the price of oil. Two types of probabilities 

were developed using Monte Carlo simulations: Conditional Probability Curves 

and Joint Probability Curves. Finally, the expected values from each scenario 

were calculated from their corresponding probability distributions. By 

calculating the expected values using such methodology, investors can observe 

the level of investment from the different scenario(s), and they can realize which 

one(s) is (are) more likely to return their desired outcome(s). 

Future work 

Although the objectives of this research were met, there will be some other 

aspects of the hydraulic fracturing design for Bakken horizontal wells that should be 

considered in future research. In designing a successful hydraulic fracturing, it is 

vitally important to know the in-situ stress field, reservoir properties, natural fracture 
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parameters, and fundamental geomechanical parameters for selecting the adequate 

orientation of horizontal wells. Hence, we suggest a comprehensive quantitative 

analysis of the Bakken petroleum system be conducted in terms of reservoir responses 

to the available tests and logs that have been conducted in the field. This will help us 

to conduct more accurate modeling of hydraulic fracturing design in the Bakken 

Formation. 

Regarding the hydraulic fracture simulation, the use of other fracture modeling 

techniques, such as the displacement discontinuity method (DDM) should also be 

considered in the optimization workflow, which we used in this research. This would 

help us to model out-of-plane propagation of fractures that was not considered in our 

3D fracture simulations in this study.  

With regard to the general approach to the uncertainty assessment, using other 

uncertainty methods, such as possibility method, Dempster Shafer evidence theory, 

and interval analysis could be considered given their ability to represent epistemic 

uncertainties in the reservoir properties. The application of uncertainty assessment 

and probability theory can be useful in the optimization of hydraulic fracturing design 

in developing unconventional reservoirs, such as the Bakken Formation. 
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NOMENCLATURE 

CPor_Mtrx : matrix compressibility, 1/psi 
CPor_NatFrac : natural fracture compressibility, 1/psi 

DI_NatFrac : natural fracture density in x-direction (used in DualPOR 
model), ft 

DJ_NatFrac : natural fracture density in y-direction (used in DualPOR 
model), ft 

DK_NatFrac : natural fracture density in z-direction (used in DualPOR 
model), ft 

HHP  : hydraulic horsepower, hp 
KvKhRatio : ratio of vertical to horizontal permeability of matrix 

rocwk  : kro at connate water 

rwirok  : krw at irreducible oil 

rogcgk  : krog at connate gas 

rgclk  : krg at connate liquid 

pm  : Proppant mass, lb 
n  : run number 

wn  : exponent for calculating krw 

own  : exponent for calculating krow 

ogn  : exponent for calculating krog 

gn  : exponent for calculating krg 

PermMtrxMultplier : matrix permeability modifier (used in HM), md 

PermNatFrac : natural fracture permeability, md 
PorMtrxMultplier : matrix porosity modifier (used in HM) 

PorFracMultplier : natural fracture porosity modifier (used in HM) 

ps  : pooled estimate of standard deviation of individual responses 

wS  : water saturation 

wcritS  : critical water saturation 

oirwS  : irreducible oil for water-oil table 

orwS  : residual oil for water-oil table 

wconS  : connate water saturation 

orwS  : residual oil for water-oil table 

lS  : liquid saturation 

orgS  : residual oil for gas-liquid table 

gconS  : connate gas saturation 

wtrS  : connate water saturation 

et  : time at end of pumping, min 

it  : time of injection, min 

Et  : signal-to-noise t-ratio 
*t  : critical t-ratio 

iV  : volume of injection into one wing, cu ft 
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fV  : volume of fracturing fluid, cu ft 

w  : hydraulic fracture width, in 

fX  : fracture half-length, ft 

Y  : sample average 
  : mean  
  : proppant schedule exponent, dimensionless 

e  : fluid efficiency at end of pumping, dimensionless 
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